精英家教网 > 高中数学 > 题目详情
2.三角形ABC中,sinBcosC=1-cosBsinC,三角形ABC的形状为直角三角形.

分析 利用两角和的正弦函数公式及三角形内角和定理可求sinA=1,结合A的范围即可得解A=90°,从而得解.

解答 解:∵sinBcosC=1-cosBsinC,
∴得sin(B+C)=1,
∵A+B+C=180°,
∴sin(B+C)=sinA,
∴sinA=1,
又∵A∈(0,180°),
可得:A=90°.
故三角形ABC的形状为:直角三角形.
故答案为:直角三角形.

点评 本题主要考查了两角和的正弦函数公式及三角形内角和定理,特殊角的三角函数值的应用,考查了转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.有一地球仪的半径为30cm,地球仪上标有A、B两地,A地北纬45°,东经40°,B地北纬45°,西经50°.
(1)求地球仪的表面积与体积;
(2)求地球仪上A、B两地所在纬线圈的半径;
(3)求地球仪上A、B两点的球面距离.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.画出函数y=$\frac{{x}^{2}}{{2}^{x}-1}$的大致图象.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知点A(-3,0),B(3,0),动点P满足|PA|=2|PB|.
(1)若点P的轨迹为曲线C,求此曲线的方程;
(2)若点Q在直线l1:x+y+3=0上,直线l2经过点Q且与曲线C只有一个公共点M,求|QM|的最小值,并求此时直线l2的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.正方体ABCD-A1B1C1D1的棱长为2,E为棱CC1的中点.
(1)求证:DB⊥直线EA1
(2)D1E与BC1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.画出方程x4-x2=y4-y2的曲线C,并回答下列问题:
(1)若点A(m,$\sqrt{2}$)在曲线C上,求m的值;
(2)若直线y=a(a∈R)与曲线C分别有一个、两个、三个、四个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知tan2θ=-2$\sqrt{2}$,π<2θ<2π,化简$\frac{2co{s}^{2}θ-sinθ-1}{\sqrt{2}sin(θ+\frac{π}{4})}$=3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过两点M(0,m)和N($\sqrt{3}$m,$\frac{1}{2}$m),(m>0),F1,F2分别为椭圆C的左、右焦点.
(1)求椭圆C的离心率;
(2)直线MF2交椭圆C另外一点为E,且四边形MF1EN的面积为$\frac{10\sqrt{3}}{7}$,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在△ABC中,|$\overrightarrow{AB}$|=3,|$\overrightarrow{AC}$|=1,BC中点为D,E为线段AD上的任意一点.
(1)求$\overrightarrow{AD}$•($\overrightarrow{AB}$-$\overrightarrow{AC}$)的值;
(2)若AC⊥BC,求$\overrightarrow{AE}$•($\overrightarrow{EB}$+$\overrightarrow{EC}$)的最大值.

查看答案和解析>>

同步练习册答案