精英家教网 > 高中数学 > 题目详情
12.有一地球仪的半径为30cm,地球仪上标有A、B两地,A地北纬45°,东经40°,B地北纬45°,西经50°.
(1)求地球仪的表面积与体积;
(2)求地球仪上A、B两地所在纬线圈的半径;
(3)求地球仪上A、B两点的球面距离.

分析 (1)利用球的表面积与体积,即可求地球仪的表面积与体积;
(2)地球仪上A、B两地所在纬线圈的半径为30×cos45°;
(3)求出AB,可得球心角,即可求地球仪上A、B两点的球面距离.

解答 解:(1)地球仪的半径为30cm,∴地球仪的表面积S=4π×900=3600πcm2,体积V=$\frac{4}{3}π×(30)^{3}$=36000πcm3
(2)地球仪上A、B两地所在纬线圈的半径为30×cos45°=15$\sqrt{2}$cm;
(3)AB=15$\sqrt{2}$×$\sqrt{2}$=30cm,∴球心角为$\frac{π}{3}$,
∴地球仪上A、B两点的球面距离为$\frac{π}{3}×30$=10πcm.

点评 本题考查球的表面积与体积,考查球面距离,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图,四棱锥V-ABCD中,∠BCD=∠BAD=90°,又∠BCV=∠BAV=90°求证:平面VDB⊥平面ABCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.下面的数组均由三个数组成,它们是:(1,2,3),(2,4,6),(3,8,11),(4,16,20),(5,32,37),…,(an,bn,cn).
(1)请写出数列{an},{bn},{cn}的通项公式,(无需证明)
(2)若数列{cn}的前n项和为Mn,求M10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列命题中,正确的有(  )
①如果一条直线垂直于平面内的两条直线,那么这条直线和这个平面垂直.
②过直线l外一点P,有且仅有一个平面与l垂直.
③如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.
④垂直于角的两边的直线必垂直角所在的平面.
⑤过点A垂直于直线a的所有直线都在过点A垂直于a的平面内.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若以原点为圆心,椭圆的焦半径c为半径的圆与该椭圆有四个交点,则该椭圆的离心率的取值范围为:($\frac{\sqrt{2}}{2}$,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.写出下面各数列的一个通项公式:
(1)3,5,7,9,…;
(2)$\frac{1}{2}$,$\frac{3}{4}$,$\frac{7}{8}$,$\frac{15}{16}$,$\frac{31}{32}$,…;
(3)-1,$\frac{3}{2}$,-$\frac{1}{3}$,$\frac{3}{4}$,-$\frac{1}{5}$,$\frac{3}{6}$…;
(4)3,33,333,3333,….

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,在四棱锥P-ABCD中,AB⊥PA,AB∥CD,且PB=BC=BD=$\sqrt{6}$,CD=2AB=2$\sqrt{2}$,∠PAD=120°,E和F分别是棱CD和PC的中点.
(1)求证:平面BEF⊥平面PCD;
(2)求直线PD与平面PBC所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若0<x1<x2<1,则下列判断正确的有③.
①e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$>lnx2-lnx1;②e${\;}^{{x}_{2}}$-e${\;}^{{x}_{1}}$<lnx2-lnx1;③x2e${\;}^{{x}_{1}}$>x1e${\;}^{{x}_{2}}$;④x2e${\;}^{{x}_{1}}$<x1e${\;}^{{x}_{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.三角形ABC中,sinBcosC=1-cosBsinC,三角形ABC的形状为直角三角形.

查看答案和解析>>

同步练习册答案