精英家教网 > 高中数学 > 题目详情
2.如图,四棱锥V-ABCD中,∠BCD=∠BAD=90°,又∠BCV=∠BAV=90°求证:平面VDB⊥平面ABCD.

分析 由已知推导出BC⊥平面VDC,从而VD⊥BC,推导出BA⊥平面VAD,从而VD⊥AB,进而VD⊥平面ABCD,由此能证明平面VDB⊥平面ABCD.

解答 证明:∵四棱锥V-ABCD中,∠BCD=90°,∠BCV=90°,
∴BC⊥CD,BC⊥VC,
∵CD∩VC=C,∴BC⊥平面VDC,
∵VD?平面VDC,∴VD⊥BC,
∵∠BAD=90°,∠BAV=90°,
∴BA⊥AV,BA⊥AD,
∵AV∩AD=A,∴BA⊥平面VAD,
∵VD?平面VAD,∴VD⊥AB,
∵AB∩BC=B,∴VD⊥平面ABCD,
∵VD?平面BDV,∴平面VDB⊥平面ABCD.

点评 本题考查面面垂直的证明,是中档题,解题时要认真审题,注意空间思维能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.抛物线y2=8x的焦点为F,点P(x,y)为该抛物线上的动点,又已知点A(-2,0),则$\frac{|PA|}{|PF|}$的取值范围是$[1,\sqrt{2}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.下列函数中既是偶函数又在(0,+∞)上是增函数的是(  )
A.y=x3B.y=|x|+1C.f(x)=$\frac{lnx}{x}$D.y=2-|x|

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.一个几何体的三视图如图所示,其中正视图和侧(左)视图是腰长为4的两个全等的等腰直角三角形,则该几何体的表面积为$32+16\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某校对高一年级学生暑假参加社区服务的次数进行了统计,随机抽取了M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)25n
[20,25)mp
[25,30)20.05
合计MN
(1)求表中n,p的值和频率分布直方图中a的值,并估计该校高一学生参加社区服务超过20次的概率;
(2)试估计该校高一学生暑假参加社区服务次数的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.某程序框图如图所示,该程序运行后输出的S的值是3018;

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.椭圆$\frac{x^2}{12}+\frac{y^2}{3}=1$的焦点分别为F1和F2,点P在椭圆上,若|PF1|=2,则|PF2|=$4\sqrt{3}-2$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.不等式$\frac{2}{x}>-3$的解集是$(-∞,-\frac{2}{3})$∪(0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.有一地球仪的半径为30cm,地球仪上标有A、B两地,A地北纬45°,东经40°,B地北纬45°,西经50°.
(1)求地球仪的表面积与体积;
(2)求地球仪上A、B两地所在纬线圈的半径;
(3)求地球仪上A、B两点的球面距离.

查看答案和解析>>

同步练习册答案