精英家教网 > 高中数学 > 题目详情

【题目】下列结论中正确的个数为(

(1)是直线和直线垂直的充要条件;

(2)在线性回归方程中,相关系数越大,变量间的相关性越强;

(3)已知随机变量,若,则

(4)若命题,,则,

A.1B.2C.3D.4

【答案】A

【解析】

对于(1)两直线垂直解得即可判断命题错误;

对于(2)由相关系数的定义确定其真伪即可;

对于(3)根据正态分布的性质求解即可;

对于(4)根据含有量词的否定,即可判断真假.

(1) 直线和直线垂直,

则有,解得,则可知(1)错误;

(2)两个随机变量相关性越强,则相关系数的绝对值越接近于1,故(2)错误;

(3)根据正态分布的性质有.故(3)正确.

(4) 若命题,,则,,可知(4)错误.

综上可知,仅(3)正确.

故选:A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点的坐标为,且长轴长为短轴长的.椭圆的上、下顶点分别为,经过点的直线与椭圆相交于两点(不同于两点).

1)求椭圆的方程;

2)若直线,求点的坐标;

3)设直线相交于点,求证:是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代的四书是指:《大学》、《中庸》、《论语》、《孟子》,甲、乙、丙、丁名同学从中各选一书进行研读,已知四人选取的书恰好互不相同,且甲没有选《中庸》,乙和丙都没有选《论语》,则名同学所有可能的选择有______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】蜂巢是由工蜂分泌蜂蜡建成的.从正面看,蜂巢口是由许多正六边形的中空柱状体连接而成,中空柱状体的底部是由三个全等的菱形面构成.如图,在正六棱柱的三个顶点处分别用平面,平面,平面截掉三个相等的三棱锥,平面,平面,平面交于点,就形成了蜂巢的结构,如下图(4)所示,

瑞士数学家克尼格利用微积分的方法证明了蜂巢的这种结构是在相同容积下所用材料最省的,英国数学家麦克劳林通过计算得到菱形的一个内角为,即.以下三个结论①;② ;③四点共面,正确命题的个数为______个;若,则此蜂巢的表面积为_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中

(Ⅰ)讨论函数的单调性;

(Ⅱ)若是方程的两个不同的实数根,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)若a=1,且f(x)≥m(0+∞)恒成立,求实数m的取值范围;

2)当时,若x=0不是f(x)的极值点,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《周髀算经》是中国古代重要的数学著作,其记载的日月历法曰:阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,.生数皆终,万物复苏,天以更元作纪历,某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中年长者已是奔百之龄(年龄介于90100),其余19人的年龄依次相差一岁,则年长者的年龄为( )

A.94B.95C.96D.98

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A02),B为抛物线x22y2上任意一点,且BAC的中点,设动点C的轨迹为曲线E.

1)求曲线E的方程;

2)是否存在斜率为1的直线l交曲线EMN两点,使得△MAN为以MN为底边的等腰三角形?若存在,请求出l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,的面积等于

(Ⅰ)求证:

(Ⅱ)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案