精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的最小正周期是π,将函数f(x)的图象向左平移$\frac{π}{6}$个单位长度后得到函数图象过点P(0,1),则函数f(x)=sin(ωx+φ)(  )
A.有一个对称中心($\frac{π}{12}$,0)B.有一条对称轴x=$\frac{π}{6}$
C.在区间[-$\frac{π}{12}$,$\frac{5π}{12}$]上单调递减D.在区间[-$\frac{π}{12}$,$\frac{5π}{12}$]上单调递增

分析 根据最小正周期是π,可得ω,通过变换规律后,图象过点P(0,1),求解φ,可得函数f(x)的解析式,即可判断各选项.

解答 解:由题意,函数f(x)的最小正周期是π,即$\frac{2π}{ω}=π$,∴ω=2.
∴f(x)=sin(2x+φ),
f(x)的图象向左平移$\frac{π}{6}$个单位,可得:sin(2x+$\frac{π}{3}$+φ),此时图象过P(0,1),
可得:$\frac{π}{3}$+φ=$\frac{π}{2}$+2kπ,k∈Z,
∵0<φ<π,
∴φ=$\frac{π}{6}$.
∴f(x)=sin(2x+$\frac{π}{6}$),
令$-\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{π}{2}+2kπ$是单调递增,
可得:$-\frac{π}{3}+kπ$$≤x≤\frac{π}{6}+kπ$,k∈Z,
∴C选项不对,
令$\frac{π}{2}+2kπ≤2x+\frac{π}{6}≤\frac{3π}{2}+2kπ$是单调递增,
可得:$\frac{π}{6}+kπ$≤x≤$\frac{2π}{3}$+kπ,k∈Z,
∴D选项不对,
由2x+$\frac{π}{6}$=kπ,
得x=$\frac{1}{2}kπ-\frac{π}{12}$
可得对称中心为($\frac{1}{2}kπ-\frac{π}{12}$,0),考查A不对.
由2x+$\frac{π}{6}$=kπ$+\frac{π}{2}$,
得x=$\frac{1}{2}kπ$$+\frac{π}{6}$,
可得对称轴方程为x=$\frac{1}{2}kπ$$+\frac{π}{6}$,
当k=0时,可得x=$\frac{π}{6}$,
∴B选项对.
故选B.

点评 本题主要考查对三角函数的化简能力和三角函数的图象和性质的运用,利用已知条件求出f(x)解析式是解决本题的关键.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知随机变量ξ的概率分布列为:
ξ012
P$\frac{1}{4}$$\frac{1}{2}$$\frac{1}{4}$
则Eξ=1,Dξ=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.直角△ABC中,AD为斜边BC边的高,若$|{\overrightarrow{AC}}|=1$,$|{\overrightarrow{AB}}|=3$,则$\overrightarrow{CD}•\overrightarrow{AB}$=(  )
A.$\frac{9}{10}$B.$\frac{3}{10}$C.$-\frac{3}{10}$D.$-\frac{9}{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.2015年12月,华中地区数城市空气污染指数“爆表”,此轮污染为2015年以来最严重的污染过程,为了探究车流量与PM2.5的浓度是否相关,现采集到华中某城市2015年12月份某星期星期一到星期日某一时间段车流量与PM2.5的数据如表:
时间星期一星期二星期三星期四星期五星期六星期日
车流量x(万辆)1234567
PM2.5的浓度y(微克/立方米)28303541495662
(1)由散点图知y与x具有线性相关关系,求y关于x的线性回归方程;(提示数据:$\sum_{i=1}^7{{x_i}{y_i}=1372}$)
(2)(I)利用(1)所求的回归方程,预测该市车流量为12万辆时PM2.5的浓度;(II)规定:当一天内PM2.5的浓度平均值在(0,50]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(50,100]内,空气质量等级为良,为使该市某日空气质量为优或者为良,则应控制当天车流量不超过多少万辆?(结果以万辆为单位,保留整数)参考公式:回归直线的方程是$\widehaty=\widehatbx+\widehata$,其中$\widehatb=\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x•\overline y}}}{{\sum_{i=1}^n{x_i^2-n{{\overline x}^2}}}}=\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知向量$\overrightarrow{m}$=($\sqrt{3}$,x),$\overrightarrow{n}$=(1,$\sqrt{3}$),且向量$\overrightarrow{m}$、$\overrightarrow{n}$的夹角为$\frac{π}{6}$,则x=(  )
A.-2B.-1C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某食品厂只做了3种与“福”字有关的精美卡片,分别是“富强福”、“和谐福”、“友善福”、每袋食品随机装入一张卡片,若只有集齐3种卡片才可获奖,则购买该食品4袋,获奖的概率为(  )
A.$\frac{3}{16}$B.$\frac{4}{9}$C.$\frac{3}{8}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正方形ABCD的边长为1,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{BC}$=$\overrightarrow{b}$,$\overrightarrow{CD}$=$\overrightarrow{c}$,则|$\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}$|等于(  )
A.1B.$\sqrt{2}$C.2$\sqrt{2}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=Msin(ωx+φ)(M>0,|φ|<$\frac{π}{2}$)的部分图象如图所示,其中A(2,3)(点A为图象的一个最高点),B(-$\frac{5}{2}$,0),则函数f(x)=3sin($\frac{π}{3}$x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.椭圆两焦点为F1(-4,0),F2(4,0),P在椭圆上,若$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$=0,△PF1F2的面积为9,则该椭圆的标准方程为(  )
A.$\frac{{x}^{2}}{25}$+$\frac{{y}^{2}}{9}$=1B.$\frac{{x}^{2}}{32}$+$\frac{{y}^{2}}{16}$=1C.$\frac{{x}^{2}}{36}$+$\frac{{y}^{2}}{20}$=1D.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

同步练习册答案