精英家教网 > 高中数学 > 题目详情
20.已知集合A到B的映射f:(x,y)→(2x-2y,14x+2y),那么集合A中元素(1,2)在B中的象是(-2,18),集合B中的元素(1,2)在A中的原象为($\frac{3}{16},-\frac{5}{16}$).

分析 由集合A中元素(1,2),即x=1,y=2,求得2x-2y=-2,14x+2y的值得集合A中元素(1,2)在B中的象,再由$\left\{\begin{array}{l}{2x-2y=1}\\{14x+2y=2}\end{array}\right.$求得x,y的值得集合B中的元素(1,2)在A中的原象.

解答 解:映射f:(x,y)→(2x-2y,14x+2y),
集合A中元素(1,2),即x=1,y=2,则2x-2y=-2,14x+2y=18,
∴元素(1,2)在B中的象是(-2,18),
集合B中的元素(1,2),即$\left\{\begin{array}{l}{2x-2y=1}\\{14x+2y=2}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=\frac{3}{16}}\\{y=-\frac{5}{16}}\end{array}\right.$.
∴元素(1,2)在A中的原象为($\frac{3}{16},-\frac{5}{16}$).
故答案为:(-2,18),($\frac{3}{16},-\frac{5}{16}$).

点评 本题考查映射的概念,考查方程组的解法,正确理解题意是关键,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.用“五点法”作出下列函数的图象:
(1)y=2sin(3x-$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin($\frac{x}{3}$+$\frac{π}{6}$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.“$\left\{\begin{array}{l}{0<x+y<3}\\{0<xy<2}\end{array}\right.$”是“$\left\{\begin{array}{l}{0<x<1}\\{0<y<2}\end{array}\right.$”的必要不充分条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.把下面在平面内成立的结论类比地推广到空间,结论还正确的是(  )
A.如果一条直线与两条平行线中的一条相交,则必与另一条相交
B.如果两条直线同时与第三条直线垂直,则这两条直线平行
C.如果两条直线同时与第三条直线相交,则这两条直线相交
D.如果一条直线与两条平行线中的一条垂直,则必与另一条垂直

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,已知AB=AC,BC=6,点P在边BC上,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为[$-\frac{9}{4}$,18].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.点F($\sqrt{3m+3}$,0)到直线$\sqrt{3}$x-$\sqrt{3m}$y=0的距离为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正方体ABCD-A1B1C1D1中,$\overrightarrow{BK}$=$\frac{1}{4}$$\overrightarrow{B{B}_{1}}$,$\overrightarrow{CM}$=$\frac{1}{2}$$\overrightarrow{C{C}_{1}}$,则平面AKM与平面ABCD所成的锐二面角的正切值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知f(x)=$\frac{2x}{x+1}$,则f($\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…f(${\frac{1}{2}}$)+f(1)+f(2)+…+f(2016)=4031.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,若∠A=60°,b=16,且此三角形的面积S=220$\sqrt{3}$,则a的值是(  )
A.$\sqrt{2400}$B.25C.55D.49

查看答案和解析>>

同步练习册答案