精英家教网 > 高中数学 > 题目详情
12.正方体ABCD-A1B1C1D1中,$\overrightarrow{BK}$=$\frac{1}{4}$$\overrightarrow{B{B}_{1}}$,$\overrightarrow{CM}$=$\frac{1}{2}$$\overrightarrow{C{C}_{1}}$,则平面AKM与平面ABCD所成的锐二面角的正切值为$\frac{\sqrt{2}}{4}$.

分析 如图所示,建立空间直角坐标系.不妨设AB=4,设平面AKM的法向量为$\overrightarrow{m}$=(x,y,z),利用$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AK}=0}\\{\overrightarrow{m}•\overrightarrow{AM}=0}\end{array}\right.$,可得$\overrightarrow{m}$,取平面ABCD的法向量$\overrightarrow{n}$=(0,0,1).利用cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$,即可得出.

解答 解:如图所示,建立空间直角坐标系.
不妨设AB=4,则D(0,0,0),A(4,0,0),K(4,4,1),M(0,4,2),
$\overrightarrow{AK}$=(0,4,1),$\overrightarrow{AM}$=(-4,4,2),
设平面AKM的法向量为$\overrightarrow{m}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{m}•\overrightarrow{AK}=0}\\{\overrightarrow{m}•\overrightarrow{AM}=0}\end{array}\right.$,$\left\{\begin{array}{l}{4y+z=0}\\{-4x+4y+2z=0}\end{array}\right.$,
取$\overrightarrow{m}$=(1,-1,4),
取平面ABCD的法向量$\overrightarrow{n}$=(0,0,1).
则cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{4}{\sqrt{18}}$=$\frac{2\sqrt{2}}{3}$,
设平面AKM与平面ABCD所成的锐二面角为θ.
则cosθ=$\frac{2\sqrt{2}}{3}$,sinθ=$\frac{1}{3}$,
∴tanθ=$\frac{1}{2\sqrt{2}}$=$\frac{\sqrt{2}}{4}$.
故答案为:$\frac{\sqrt{2}}{4}$.

点评 本题考查了利用平面法向量的夹角求出二面角的方法、向量夹角公式、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知实数x,y满足方程x2+y2=3,求$\frac{y+1}{x+3}$的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.如图所示,一个圆柱形乒乓球筒,高为40厘米,底面半径为4厘米.球筒的上底和下底分别粘有一个乒乓球,乒乓球与球筒底面及侧面均相切(球筒和乒乓球厚度忽略不计).一个平面与两乒乓球均相切,且此平面截球筒边缘所得的图形为一个椭圆,则该椭圆的离心率为$\frac{\sqrt{15}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知集合A到B的映射f:(x,y)→(2x-2y,14x+2y),那么集合A中元素(1,2)在B中的象是(-2,18),集合B中的元素(1,2)在A中的原象为($\frac{3}{16},-\frac{5}{16}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.某人忘记了密码的最后两个数字,只记得这两个数字是不超过5的奇数,则输入一次就正确的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{9}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=[cos(x+$\frac{π}{4}$)+sin(x+$\frac{π}{4}$)][cos(x+$\frac{π}{4}$)-sin(x+$\frac{π}{4}$)]在一个周期内的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图,平面PAD⊥平面ABCD,ABCD是正方形,∠PAD=90°,且PA=AD=2,E、F、G分别是线段PA、PD、CD的中点.
(1)求异面直线EG、BD所成角的余弦值.
(2)求三棱椎E-FGC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.对具有线性相关关系的变量x、y,有一组观测数据(xi,yi)(i=1,2,…,9),其回归方程为y=$\frac{1}{10}$x+a,且x1+x2+…+x9=10,y1+y2+…+y9=19,则实数a的值是(  )
A.2B.-2C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若0<b<a,下列不等式中不一定成立的是(  )
A.$\frac{1}{a-b}>\frac{1}{b}$B.$\frac{1}{a}<\frac{1}{b}$C.$\sqrt{a}>\sqrt{b}$D.-a<-b<0

查看答案和解析>>

同步练习册答案