精英家教网 > 高中数学 > 题目详情
7.某人忘记了密码的最后两个数字,只记得这两个数字是不超过5的奇数,则输入一次就正确的概率为(  )
A.$\frac{1}{3}$B.$\frac{1}{6}$C.$\frac{1}{9}$D.$\frac{1}{12}$

分析 密码的最后两个数字包含的基本事件个数n=3×3=9,由此能求出输入一次就正确的概率.

解答 解:∵某人忘记了密码的最后两个数字,只记得这两个数字是不超过5的奇数,
∴密码的最后两个数字包含的基本事件个数n=3×3=9,
∴输入一次就正确的概率为p=$\frac{1}{9}$.
故选:C.

点评 本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设x,y,z是非零实数,若a=$\frac{x}{|x|}$+$\frac{y}{|y|}$+$\frac{z}{|z|}$+$\frac{xyz}{|xyz|}$,则以a的值为元素的集合中元素的个数是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.对于两个非空集合P、Q,定义P⊙Q=$\left\{\begin{array}{l}{\{x|x=a×b,a,b∈P∪Q\},P∩Q=∅}\\{\{x|x=a×b,a∈P∩Q,b∈P∪Q\},P∩Q≠∅}\end{array}\right.$,若集合M={-1,2,3,4},N={-1,1,2},则M⊙N中元素的个数为(  )
A.5B.7C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在△ABC中,已知AB=AC,BC=6,点P在边BC上,则$\overrightarrow{PA}$•$\overrightarrow{PB}$的取值范围为[$-\frac{9}{4}$,18].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若(x2-3x+1)8•(2x-1)4=a0+a1x+a2x2+…+a20x20,则a2=380.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正方体ABCD-A1B1C1D1中,$\overrightarrow{BK}$=$\frac{1}{4}$$\overrightarrow{B{B}_{1}}$,$\overrightarrow{CM}$=$\frac{1}{2}$$\overrightarrow{C{C}_{1}}$,则平面AKM与平面ABCD所成的锐二面角的正切值为$\frac{\sqrt{2}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.对于函数f(x)=sinx,g(x)=cosx,h(x)=x+$\frac{π}{3}$,有如下五个命题:
①f(x)-g(x)的最大值为$\sqrt{2}$;
②将f(x)的图象向右平移$\frac{π}{2}$个单位可得g(x)的图象;.
③f[h(x)]在区间[-$\frac{π}{2}$,0]上是增函数;
④点($\frac{2π}{3}$,0)是函数f[h(x)]图象的一个对称中心;
⑤函数g[h(x)]的图象上相邻的两条对称轴之间的距离是2π.
其中真命题的序号是①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知数列{an}的首项为2,数列{bn}为等比数列且bn=$\frac{{{a_{n+1}}}}{a_n}$,若b11•b12=2,则a23=4096.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知集合M={x|y=ln(1-x)},集合N={y|y=3x,x∈R},则M∩N=(  )
A.{x|x<1}B.{x|x>1}C.{x|0<x<1}D.

查看答案和解析>>

同步练习册答案