分析 由已知结合三棱锥和正三棱柱的几何特征,可得此三棱锥外接球,即为以△BCD为底面以DA为高的正三棱柱的外接球,分别求出棱锥底面半径r,和球心距d,可得球的半径R,即可求出三棱锥A-BCD外接球的表面积.
解答 解:根据已知中底面△BCD是边长为2的正三角形,DA⊥平面BCD,可得此三棱锥外接球,即为以△BCD为底面以DA为高的正三棱柱的外接球
∵△BCD是边长为2的正三角形,
∴△BCD的外接圆半径r=$\frac{2\sqrt{3}}{3}$,
球心到△BCD的外接圆圆心的距离d=$\sqrt{3}$,
故球的半径R=$\sqrt{3+\frac{4}{3}}$=$\sqrt{\frac{13}{3}}$,
故三棱锥P-ABC外接球的表面积S=4πR2=$\frac{52}{3}$π,
故答案为:$\frac{52}{3}$π.
点评 本题考查的知识点是球内接多面体,正确求出球的半径R是解答的关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com