精英家教网 > 高中数学 > 题目详情
13.设Sn为数列{an}的前n项和,Sn=2n2-30n.
(1)求a1及an
(2)判断这个数列是否是等差数列.

分析 (1)在数列的前n项和中,取n=1求得a1,再由an=Sn-Sn-1(n≥2)求得an
(2)由(1)中求得的通项公式,利用定义判断数列是等差数列.

解答 解:(1)由Sn=2n2-30n,得${a}_{1}={S}_{1}=2×{1}^{2}-30×1=-28$,
当n≥2时,an=Sn-Sn-1=2n2-30n-[2(n-1)2-30(n-1)]=4n-32.
验证n=1上式成立,
∴an=4n-32;
(2)由an=4n-32,得an-1=4(n-1)-32(n≥2),
∴an-an-1=4n-32-[4(n-1)-32]=4(常数),
∴数列{an}是等差数列.

点评 本题考查等差数列的通项公式,考查了等差数列的前n项和,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.如图,一个三棱锥,底面ABC为正三角形,侧棱SA=SB=SC=1,∠ASB=30°,M、N分别为棱SB和SC上的点,求△AMN的周长的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.函数f(x)=(x-a)2(x+b)ex(a,b∈R).
(1)当a=0,b=-3时.求函数f(x)的单调区间;
(2)若x=a是f(x)的极大值点.
(i)当a=0时,求b的取值范围;
(ii)当a为定值时.设x1,x2,x3(其中x1<x2<x3))是f(x)的3个极值点,问:是否存在实数b,可找到实数x4,使得x4,x1,x2,x3成等差数列?若存在求出b的值及相应的x4,若不存在.说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知三棱锥A-BCD中,DA⊥平面BCD,底面△BCD为等边三角形,且BC=2,AD=2$\sqrt{3}$,则此三棱锥的外接球的表面积为$\frac{52}{3}$π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.将十进制数8543转化为七进制数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设函数f(x)=-x2+2x+3,x∈(-3,2],则f(x)的值域为(  )
A.(-12,3]B.(-12,3)C.(-12,4]D.(-12,4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}中,an>0且前n项和Sn=$\frac{1}{2}$(an+$\frac{1}{{a}_{n}}$),则Sn=$\sqrt{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.(1)若sinx=$\frac{a+1}{a-2}$,求实数a的取值范围.
(2)求函数y=cos2x+2sinx-2的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.对实数列{an},若存在常数M>0,使得对任意的n∈N*,|an|≤M,(*),则称数列{an}为有界数列,若M是使(*)成立的最小正常数,则称M是最佳上界,现定义:ak=$\frac{1}{{k}^{2}}$+$\frac{1}{{k}^{2}+1}$+…+$\frac{1}{(k+1)^{2}-1}$(k=1,2,…).
(1)比较a1,a2,a3的大小,并猜想数列{an}的单调性(不需证明);
(2)定义数列{an}的交替和为:Sn=a1-a2+a3-a4+…+(-1)n-1an,问:数列{Sn}是否为有界函数?证明你的结论;
(3)①(理科)证明:数列{nan}为有界数列,并求此数列的最佳上界M;
②(文科)证明:数列{nan}为有界数列.

查看答案和解析>>

同步练习册答案