分析 (1)由${2}^{{a}_{3}}$=8,$,{2}^{{a}_{5}}$=128,可得a3=3,a5=7,再利用等差数列的通项公式及其性质即可得出.
(2)${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-3)(2n-1)}=\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$,利用裂项求和方法即可得出.
解答 解:(1)由${2}^{{a}_{3}}$=8,$,{2}^{{a}_{5}}$=128,可得a3=3,a5=7,
设数列{an}的公差为d,则2d=a5-a3=4⇒d=2,
所以an=a3+(n-3)d=2n-3.
(2)因为${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}=\frac{1}{(2n-3)(2n-1)}=\frac{1}{2}(\frac{1}{2n-3}-\frac{1}{2n-1})$,
所以Tn=$\frac{1}{2}[(-1-1)$+$(1-\frac{1}{3})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{2n-3}-\frac{1}{2n-1})]$=$\frac{1}{2}(-1-\frac{1}{2n-1})$=$\frac{n}{1-2n}$.
点评 本题考查了等差数列的通项公式与求和公式、裂项求和方法,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | 2 | C. | 8 | D. | -8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{3}{5}$ | C. | $\frac{4}{3}$ | D. | $\frac{5}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{{{n^2}+5n}}{2}$ | B. | $\frac{{{n^2}+5n}}{4}$ | C. | $\frac{{{n^2}+3n}}{2}$ | D. | $\frac{{{n^2}+3n}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 86.5; 86.7 | B. | 88; 86.7 | C. | 88;86.8 | D. | 86.5;86.8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2$\sqrt{2}$,+∞) | B. | (-∞,-2$\sqrt{2}$)∪(2$\sqrt{2}$,+∞) | C. | (-2$\sqrt{2}$,2)∪(2$\sqrt{2}$,+∞) | D. | (-∞,-2)∪(2,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com