【题目】如图,B是AC的中点,
,P是平行四边形BCDE内(含边界)的一点,且
.有以下结论:
①当x=0时,y∈[2,3];
②当P是线段CE的中点时,
;
③若x+y为定值1,则在平面直角坐标系中,点P的轨迹是一条线段;
④x﹣y的最大值为﹣1;
其中你认为正确的所有结论的序号为_____.
![]()
科目:高中数学 来源: 题型:
【题目】某小学对五年级的学生进行体质测试,已知五年一班共有学生30人,测试立定跳远的成绩用茎叶图表示如图(单位:
):男生成绩在175
以上(包括175
)定义为“合格”,成绩在175
以下(不包括175
)定义为“不合格”.女生成绩在165
以上(包括165
)定义为“合格”,成绩在165
以下(不包括165
)定义为“不合格”.
![]()
(1)求五年一班的女生立定跳远成绩的中位数;
(2)在五年一班的男生中任意选取3人,求至少有2人的成绩是合格的概率;
(3)若从五年一班成绩“合格”的学生中选取2人参加复试,用
表示其中男生的人数,写出
的分布列,并求
的数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于实数
,将满足“
且
为整数”的实数
称为实数
的小数部分,用记号
表示.对于实数
,无穷数列
满足如下条件:
,
其中
.
(1)若
,求数列
;
(2)当
时,对任意的
,都有
,求符合要求的实数
构成的集合
;
(3)若
是有理数,设
(
是整数,
是正整数,
互质),问对于大于
的任意正整数
,是否都有
成立,并证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知无穷数列
的前n项和为
,记
,
,…,
中奇数的个数为
.
(Ⅰ)若
= n,请写出数列
的前5项;
(Ⅱ)求证:"
为奇数,
(i = 2,3,4,...)为偶数”是“数列
是单调递增数列”的充分不必要条件;
(Ⅲ)若
,i=1, 2, 3,…,求数列
的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}是以d为公差的等差数列,{bn}数列是以q为公比的等比数列.
(1)若数列{bn}的前n项和为Sn,且a1=b1=d=2,S3<a1003+5b2﹣2010,求整数q的值;
(2)在(1)的条件下,试问数列中是否存在一项bk,使得bk恰好可以表示为该数列中连续p(p∈N,p≥2)项的和?请说明理由;
(3)若b1=ar,b2=as≠ar,b3=at(其中t>s>r,且(s﹣r)是(t﹣r)的约数),求证:数列{bn}中每一项都是数列{an}中的项.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,以椭圆
(
)的右焦点
为圆心,
为半径作圆
(其中
为已知椭圆的半焦距),过椭圆上一点
作此圆的切线,切点为
.
![]()
(1)若
,
为椭圆的右顶点,求切线长
;
(2)设圆
与
轴的右交点为
,过点
作斜率为
(
)的直线
与椭圆相交于
、
两点,若
恒成立,且
.求:
(ⅰ)
的取值范围;
(ⅱ)直线
被圆
所截得弦长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某温室大棚规定,一天中,从中午12点到第二天上午8点为保温时段,其余4小时为工作作业时段,从中午12点连续测量20小时,得出此温室大棚的温度y(单位:度)与时间t(单位:小时,
)近似地满足函数
关系,其中,b为大棚内一天中保温时段的通风量。
(1)若一天中保温时段的通风量保持100个单位不变,求大棚一天中保温时段的最低温度(精确到0.1℃);
(2)若要保持一天中保温时段的最低温度不小于17℃,求大棚一天中保温时段通风量的最小值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列1,1,1,2,2,1,2,4,3,1,2,4,8,4,1,2,4,8,16,5,…,其中第一项是
,第二项是1,接着两项为
,
,接着下一项是2,接着三项是
,
,
,接着下一项是3,依此类推.记该数列的前
项和为
,则满足
的最小的正整数
的值为( )
A.65B.67C.75D.77
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com