精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=x3-3x2+(3-3a2)x+b(a≥1,b∈R).当x∈[0,2]时,记|f(x)|的最大值为|f(x)|max,对任意的a≥1,b∈R,|f(x)|max≥k恒成立.则实数k的最大值为(  )
A.1B.2C.3D.4

分析 求出f(x)的导数,分解因式,可得区间[0,2]为减区间,可得f(x)的最值,由绝对值不等式的性质,结合二次函数的最值求法,可得k的范围,进而得到k的最大值.

解答 解:函数f(x)=x3-3x2+(3-3a2)x+b的导数为f′(x)=3x2-6x+3-3a2
=3(x-1+a)(x-1-a),
由a≥1,可得1+a≥2,1-a≤0,
则区间[0,2]为减区间,可得f(x)的最小值为f(0)=b,
最大值为f(2)=b+2-6a2
对任意的a≥1,b∈R,|f(x)|max≥k恒成立,
可得k≤|b|,k≤|b+2-6a2|,
即为2k≤|b|+|b+2-6a2|,
由|b|+|b+2-6a2|≥|b-b-2+6a2|=|6a2-2|≥4,
可得2k≤4,即k≤2,
则k的最大值为2.
故选:B.

点评 本题考查不等式恒成立问题的解法,注意运用导数判断单调性,考查绝对值不等式的性质和化简整理的运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.如图所示,圆O的圆心为坐标原点,B为圆O上一点,若点A坐标为(3,0),|AB|=4,sin∠AOB=$\frac{\sqrt{15}}{4}$.
求:(1)△AOB的面积;
(2)AB所在的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.在平面直角坐标系xOy中,直线x-y+1=0截以原点O为圆心的圆所得的弦长为$\sqrt{6}$,则圆O的方程为x2+y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设k∈R,“直线l:y=kx+$\sqrt{2}$与圆x2+y2=1相切”是“k=1”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分又不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数y=($\frac{1}{3}$)${\;}^{2{x}^{2}-3x+1}$的单调递增区间为(  )
A.(1,+∞)B.(-∞,$\frac{3}{4}$]C.($\frac{1}{2}$,+∞)D.[$\frac{3}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知关于x的不等式|x-a|<b(b>0)的解集是-3<x<5,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在区间[0,2]内任取两个实数a,b,则方程x2-ax+b=0有两根x1,x2,且x1<1<x2的概率为(  )
A.$\frac{7}{8}$B.$\frac{3}{4}$C.$\frac{1}{8}$D.$\frac{1}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在等差数列{an}中,a1=25,d=-2,求{an}的前n项和Sn的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.函数f(x)=2x+x-2的零点所在区间是(  )
A.(-∞,-1)B.(-l,0)C.(0,1)D.(1,2)

查看答案和解析>>

同步练习册答案