精英家教网 > 高中数学 > 题目详情
7.函数y=($\frac{1}{3}$)${\;}^{2{x}^{2}-3x+1}$的单调递增区间为(  )
A.(1,+∞)B.(-∞,$\frac{3}{4}$]C.($\frac{1}{2}$,+∞)D.[$\frac{3}{4}$,+∞)

分析 利用指数函数的单调性,通过二次函数的性质可得结论.

解答 解:令t=2x2-3x+1,可得函数的对称轴为:x=$\frac{3}{4}$,
x∈(-∞,$\frac{3}{4}$],t=2x2-3x+1是减函数,
由复合函数的单调性可知,函数y=($\frac{1}{3}$)${\;}^{2{x}^{2}-3x+1}$的单调递增区间为(-∞,$\frac{3}{4}$],
故选:B.

点评 本题主要考查复合函数的单调性,指数函数、二次函数的性质,体现了转化的数学思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.设函数fn(x)=-xn+3ax(a∈R,n∈N+),若对任意的x1,x2∈[-1,1],都有|f3(x1)-f3(x2)|≤1,则a的取值范围是(  )
A.[$\frac{1}{6}$,$\frac{1}{\root{3}{16}}$]B.[$\frac{1}{6}$,$\frac{1}{4}$]C.[$\frac{1}{9}$,$\frac{1}{\root{3}{16}}$]D.[$\frac{1}{9}$,$\frac{1}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知:圆C:(x-1)2+(y-2)2=25,直线l:(m+1)x+(2m+1)y-7m-4=0.
求:(1)求直线l恒过定点P的坐标;
(2)求证:不论m取何值,直线l与圆恒有两个交点;
(3)求直线l被圆M截得的弦长最小时的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=lnx+$\frac{a+e-2}{x}$(a≥0).
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线(1-e)x-y+1=0平行,求a的值;
(2)若不等式f(x)≥a对于x>0的一切值恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.证明:7|(22225555+55552222

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知函数f(x)=x3-3x2+(3-3a2)x+b(a≥1,b∈R).当x∈[0,2]时,记|f(x)|的最大值为|f(x)|max,对任意的a≥1,b∈R,|f(x)|max≥k恒成立.则实数k的最大值为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知两数f(x)=sin2x-cos2x(x∈(0,π)),若f′(x0)=2,则x0=$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知平面向量$\overrightarrow{a}$,$\overrightarrow{b}$和$\overrightarrow{c}$在同一平面内且两两不共线,关于非零向量$\overrightarrow{a}$的分解有如下四个命题:
①给定向量$\overrightarrow{b}$,总存在向量$\overrightarrow{c}$,使$\overrightarrow{a}$=$\overrightarrow{b}$+$\overrightarrow{c}$;
②给定向量$\overrightarrow{b}$和$\overrightarrow{c}$,总存在实数λ和μ,使$\overrightarrow{a}$=λ$\overrightarrow{b}$+μ$\overrightarrow{c}$;
③给定单位向量$\overrightarrow{b}$和正数μ,总存在单位向量$\overrightarrow{c}$和实数λ,使$\overrightarrow{a}$=λ$\overrightarrow{b}$+μ$\overrightarrow{c}$;
④给定正数λ和μ,总存在单位向量$\overrightarrow{b}$和单位向量$\overrightarrow{c}$,使$\overrightarrow{a}$=λ$\overrightarrow{b}$+μ$\overrightarrow{c}$.
则所有正确的命题序号是①②.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某学校研究性学习小组对该校高三学生视力情况进行调查,在高三的全体1000名学生中随机抽取了100名学生的体检表,并得到如图直方图:
(Ⅰ)若直方图中后四组的频数成等差数列,试估计全年级视力在5.0以下的人数;
(Ⅱ)学习小组成员发现,学习成绩突出的学生,近视的比较多,为了研究学生的视力与学习成绩是否有关系,对年级名次在1~50名和951~1000名的学生进行了调查,得到如下数据:
是否近视1~50951~1000合计
年级名次
近视413273
不近视91827
合计5050100
根据表中的数据,能否在犯错的概率不超过0.05的前提下认为视力与学习成绩有关系?
(Ⅲ)在(Ⅱ)中调查的100名学生中,按照分层抽样在不近视的学生中抽取了9人,进一步调查他们良好的护眼习惯,并且在这9人中任取3人,记名次在1~50名的学生人数为X,求X的分布列和数学期望.
P(K2≥k)0.100.050.0250.0100.005
k2.7063.8415.0246.6357.879
附:
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
n=a+b+c+d.

查看答案和解析>>

同步练习册答案