17£®É躯Êýfn£¨x£©=-xn+3ax£¨a¡ÊR£¬n¡ÊN+£©£¬Èô¶ÔÈÎÒâµÄx1£¬x2¡Ê[-1£¬1]£¬¶¼ÓÐ|f3£¨x1£©-f3£¨x2£©|¡Ü1£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®[$\frac{1}{6}$£¬$\frac{1}{\root{3}{16}}$]B£®[$\frac{1}{6}$£¬$\frac{1}{4}$]C£®[$\frac{1}{9}$£¬$\frac{1}{\root{3}{16}}$]D£®[$\frac{1}{9}$£¬$\frac{1}{4}$]

·ÖÎö ¸ù¾Ý¶ÔÈÎÒâx1£¬x2¡Ê[-1£¬1]£¬¶¼ÓÐ|f3£¨x1£©-f3£¨x2£©|¡Ü1£¬ËµÃ÷µ±xÈ¡Á½¸öÌØÊâÖµ-1ºÍ1ʱ|f3£¨1£©-f3£¨-1£©|¡Ü1³ÉÁ¢£¬ÓÉ´ËÇó³öaµÄ³õ²½·¶Î§£¬È»ºó°ÑÔ­º¯Êýf3£¨x£©Çóµ¼£¬µÃµ½µ¼º¯ÊýµÄÁ½¸öÁãµãΪ-$\sqrt{a}$£¬$\sqrt{a}$£¬ÔÙÇó³öº¯Êýf3£¨x£©ÔÚ£¨-1£¬1£©Éϵļ«´óÖµºÍ¼«Ð¡Öµ£¬ÔÙÓɼ«´óÖµºÍ¼«Ð¡Öµ²îµÄ¾ø¶ÔֵСÓÚµÈÓÚ1Çó³öaµÄȡֵ·¶Î§£¬ºÍÓÉ|f3£¨1£©-f3£¨-1£©|¡Ü1Çó³öµÄaµÄ·¶Î§È¡½»¼¯¼´¿É

½â´ð ½â£ºÒòΪ¶ÔÈÎÒâx1£¬x2¡Ê[-1£¬1]£¬¶¼ÓÐ|f3£¨x1£©-f3£¨x2£©|¡Ü1£¬
ËùÒÔ|f3£¨1£©-f3£¨-1£©|¡Ü1£¬´Ó¶øÓÐ|£¨-1+3a£©-£¨1-3a£©|=|6a-2|¡Ü1£¬
ËùÒÔ$\frac{1}{6}$¡Üa¡Ü$\frac{1}{2}$£®
ÓÖf3¡ä£¨x£©=-3£¨x2-a£©£¬
ÔÚ[-1£¬-$\sqrt{a}$]£¬[$\sqrt{a}$£¬1]ÄÚf¡ä3£¨x£©£¼0£¬
ËùÒÔf3£¨x£©ÔÚ[-1£¬-$\sqrt{a}$]£¬[$\sqrt{a}$£¬1]ÄÚΪ¼õº¯Êý£¬
f3£¨x£©ÔÚ[-$\sqrt{a}$£¬$\sqrt{a}$]ÄÚΪÔöº¯Êý£¬
Ö»Ðè|f3£¨$\sqrt{a}$£©-f3£¨$\sqrt{a}$£©|¡Ü1
»¯¼ò¿ÉµÃ4a$\sqrt{a}$¡Ü1£¬½âµÃ£ºa¡Ü$\frac{1}{\root{3}{16}}$£®
ËùÒÔaµÄȡֵ·¶Î§ÊÇ$\frac{1}{6}$¡Üa¡Ü$\frac{1}{\root{3}{16}}$£®
¹ÊÑ¡£ºA£®

µãÆÀ ±¾Ì⿼²éÁËÀûÓõ¼ÊýÑо¿º¯ÊýµÄ×îÖµ£¬¿¼²éÁËÊýѧת»¯Ë¼Ïë·½·¨£¬ÊôÓÐÒ»¶¨ÄѶÈÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖªÍÖÔ²C£º$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©£¬¹ýÍÖÔ²µÄÓÒ½¹µãFÈÎ×÷Ò»ÌõÖ±Ïß½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬¹ýÍÖÔ²ÖÐÐÄÈÎ×÷Ò»ÌõÖ±Ïß½»ÍÖÔ²CÓÚM£¬NÁ½µã£®
£¨¢ñ£©ÇóÖ¤£ºAMÓëANµÄбÂÊÖ®»ýΪ¶¨Öµ£»
£¨¢ò£©Èô2a•|AB|=|MN|2£¬ÊÔ̽¾¿Ö±ÏßABÓëÖ±ÏßMNµÄÇãб½ÇÖ®¼äµÄ¹ØÏµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªº¯Êýf£¨x£©=$\frac{{x}^{2}}{{e}^{x}}$£®
£¨1£©Çóf£¨x£©µÄ¼«Ð¡ÖµºÍ¼«´óÖµ£»
£¨2£©µ±ÇúÏßy=f£¨x£©µÄÇÐÏßlµÄбÂÊΪÕýÊýʱ£¬ÇólÔÚxÖáÉϵĽؾàºÍȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

5£®Í¼1ÊÇÒ»¶Î°ëÔ²ÖùÐÎË®ÇþµÄÖ±¹Ûͼ£¬Æäºá¶ÏÃæÈçͼ2Ëùʾ£¬ÆäÖÐCΪ°ëÔ²»¡$\widehat{ACB}$µÄÖе㣬°Ó¿íABΪ2Ã×£®
£¨1£©µ±ÇþÖÐË®ÉîCDΪ0.4Ã×ʱ£¬ÇóË®ÃæµÄ¿í¶È£»
£¨2£©Èô°ÑÕâÌõË®Çþ¸ÄÍÚ£¨²»×¼ÌîÍÁ£©³Éºá¶ÏÃæÎªµÈÑüÌÝÐεÄË®Çþ£¬ÇÒʹÇþµÄµ×ÃæÓëµØÃæÆ½ÐУ¬Ôòµ±¸ÄÍÚºóµÄË®Çþµ×¿íΪ¶àÉÙʱ£¬ËùÍÚ³öµÄÍÁÁ¿×îÉÙ£¿

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬µãPÊÇ¡÷ABCÔÚÆ½ÃæÍâµÄÒ»µã£¬PA=PB=PC=2£¬AB=BC=AC=1£¬
£¨1£©ÇóPCÓëÆ½ÃæABCËù³ÉµÄ½Ç
£¨2£©ÈôEΪPCµÄÖе㣬ÇóBEÓëÆ½ÃæABCËù³ÉµÄ½Ç£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÈçͼËùʾ£¬Ô²OµÄÔ²ÐÄÎª×ø±êÔ­µã£¬BΪԲOÉÏÒ»µã£¬ÈôµãA×ø±êΪ£¨3£¬0£©£¬|AB|=4£¬sin¡ÏAOB=$\frac{\sqrt{15}}{4}$£®
Ç󣺣¨1£©¡÷AOBµÄÃæ»ý£»
£¨2£©ABËùÔÚµÄÖ±Ïß·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÔ²C1£º£¨x+3£©2+y2=4ºÍÖ±Ïßl£º14x+8y-23=0£®
£¨1£©ÇóÔ²C1¹ØÓÚÖ±Ïßl¶Ô³ÆµÄÔ²C2µÄ·½³Ì£»
£¨2£©ÉèPÎªÆ½ÃæÉϵĵ㣬ÇÒ´æÔÚ¹ýµãPµÄÎÞÇî¶à¶Ô»¥Ïà´¹Ö±µÄÖ±Ïßl1ºÍl2£¬ËüÃÇ·Ö±ðÓëÔ²C1ºÍÔ²C2Ïཻ£¬ÇÒÖ±Ïßl1±»Ô²C1½ØµÃµÄÏÒ³¤ÓëÖ±Ïßl2±»Ô²C2½ØµÃµÄÏÒ³¤ÏàµÈ£¬ÊÔÇóËùÓÐÂú×ãÌõ¼þµÄµãPµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®ÒÑÖª¡ÑC¾­¹ýA£¨2£¬1£©£¬B£¨3£¬0£©£¬C£¨$\frac{3}{2}$£¬$\frac{\sqrt{3}}{2}$£©£®
£¨1£©Çó¡ÑCµÄ·½³Ì£»
£¨2£©¹ýÔ­µã×÷Ö±Ïßl½»¡ÑCÓÚM£¬NÁ½µã£¬Èô$\overrightarrow{OM}$=2$\overrightarrow{MN}$£¬ÇóÖ±Ïßl·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®º¯Êýy=£¨$\frac{1}{3}$£©${\;}^{2{x}^{2}-3x+1}$µÄµ¥µ÷µÝÔöÇø¼äΪ£¨¡¡¡¡£©
A£®£¨1£¬+¡Þ£©B£®£¨-¡Þ£¬$\frac{3}{4}$]C£®£¨$\frac{1}{2}$£¬+¡Þ£©D£®[$\frac{3}{4}$£¬+¡Þ£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸