精英家教网 > 高中数学 > 题目详情

【题目】如图,已知BD为圆锥AO底面的直径,若C是圆锥底面所在平面内一点,,且AC与圆锥底面所成角的正弦值为.

(1)求证:平面平面ACD

(2)求二面角的平面角的余弦值.

【答案】(1)证明见解析

(2)

【解析】

1)首先找到AC与圆锥底面所成角,求出,可得,结合圆锥的性质,可证明平面AOC进而可得平面平面ACD

2)解法一:建立空间直角坐标系,求出平面ACD的一个法向量和平面ABD的一个法向量,通过夹角公式,可求得两法向量的夹角,进而得到二面角的平面角的余弦值;解法二:过点O交于F.过FDCH,连接HO

为二面角的平面角,通过三角形的边角关系求出的余弦.

(1)证明:由及圆锥的性质,

所以为等边三角形,O所在平面,

所以AC与底面所成角,

AC与底面所成的角的正弦值为

中,

中,

所以

圆锥的性质可知:O所在平面,

因为O所在平面,所以

AO平面AOC,所以平面AOC

平面ACD

故平面平面ACD

(2)解法一:在圆O所在平面过点OBD的垂线交圆O于点E,以O为坐标原点,OEx轴,ODy轴,OAz轴,建立如图空间直角坐标系,

由题可知,

所以

设平面ACD的一个法向量为

因为

所以

,则

平面ABD的一个法向量为

所以

二面角的平面角的余弦值为.

解法二:过点O交于F.过FDCH,连接HO

所以为二面角的平面角,

中,因为

所以

因为

所以,即

CHD的中点,

所以

中,

所以.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】水污染现状与工业废水排放密切相关,某工厂深人贯彻科学发展观,努力提高污水收集处理水平,其污水处理程序如下:原始污水必先经过A系统处理,处理后的污水(A级水)达到环保标准(简称达标)的概率为p0<p<1.经化验检测,若确认达标便可直接排放;若不达标则必须进行B系统处理后直接排放.

某厂现有4个标准水量的A级水池,分别取样、检测,多个污水样本检测时,既可以逐个化验,也可以将若干个样本混合在一起化验,混合样本中只要有样本不达标,则混合样本的化验结果必不达标,若混合样本不达标,则该组中各个样本必须再逐个化验;若混合样本达标,则原水池的污水直接排放

现有以下四种方案:

方案一:逐个化验;

方案二:平均分成两组化验;方案三;三个样本混在一起化验,剩下的一个单独化验;

方案四:四个样本混在一起化验.

化验次数的期望值越小,则方案越"".

1)若,求2A级水样本混合化验结果不达标的概率;

2)①若,现有4A级水样本需要化验,请问:方案一、二、四中哪个最"?②若方案三方案四",求p的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司统计了20102018年期间公司年收的增加值(万元)以及相应的年增长率,所得数据如下所示:

年份

2010

2011

2012

2013

2014

2015

2016

2017

2018

代码

1

2

3

4

5

6

7

8

9

增加值

1555

2100

2220

2740

3135

3563

4041

5494.4

6475

增长率

1)通过散点图可知,可用线性回归模型拟合20102014的关系;

①求20102014年这5年期间公司年利润的增加值的平均数

②求关于的线性回归方程

2)从哪年开始连续三年公司利润增加值的方差最大?(不需要说明理由)

附:参考公式:回归直线方程中的斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的部分图象如图所示.

(1) 求函数的解析式;

(2) 如何由函数的通过适当图象的变换得到函数的图象, 写出变换过程;

(3) 若,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在梯形中,,四边形为矩形,平面平面.

(1)证明:平面

(2)设点在线段上运动,平面与平面所成锐二面角为,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是自然对数的底数).

(1)若函数在点处的切线方程为,试确定函数的单调区间;

(2)①当时,若对于任意,都有恒成立,求实数的最小值;②当时,设函数,是否存在实数,使得?若存在,求出的取值范围;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某金店用一杆不准确的天平(两边臂不等长)称黄金,某顾客要购买黄金,售货员先将的砝码放在左盘,将黄金放于右盘使之平衡后给顾客;然后又将的砝码放入右盘,将另一黄金放于左盘使之平衡后又给顾客,则顾客实际所得黄金(  )

A. 大于B. 小于C. 大于等于D. 小于等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中e为自然对数的底数.

1)讨论函数的单调性;

2)用表示中较大者,记函数.若函数上恰有2个零点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】国家学生体质健康测试专家组到某学校进行测试抽查,在高三年级随机抽取100名男生参加实心球投掷测试,测得实心球投掷距离(均在5至15米之内)的频数分布表如下(单位:米):

分组

频数

9

23

40

22

6

规定:实心球投掷距离在之内时,测试成绩为“良好”,以各组数据的中间值代表这组数据的平均值,将频率视为概率.

(1)求,并估算该校高三年级男生实心球投掷测试成绩为“良好”的百分比.

(2)现在从实心球投掷距离在之内的男生中用分层抽样的方法抽取5人,再从这5人中随机抽取3人参加提高体能的训练,求:在被抽取的3人中恰有两人的实心球投掷距离在内的概率.

查看答案和解析>>

同步练习册答案