已知函数f(x)=aln x=(a为常数).
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-5=0垂直,求a的值;
(2)求函数f(x)的单调区间;
(3)当x≥1时,f(x)≤2x-3恒成立,求a的取值范围.
(1)a=1(2)f(x)的单调增区间为(0,+∞),单调减区间为(3)a≤1.
【解析】(1)函数f(x)的定义域为{x|x>0},f′(x)=.
又曲线y=f(x)在点(1,f(1))处的切线与直线x+2y-5=0垂直,
所以f′(1)=a+1=2,即a=1.(4分)
(2)由f′(x)= (x>0),
当a≥0时,
f′(x)>0恒成立,所以f(x)的单调增区间为(0,+∞).
当a<0时,
由f′(x)>0,得0<x<-,
所以f(x)的单调增区间为;
由f′(x)<0,得x>-,
所以f(x)的单调减区间为.(10分)
(3)设g(x)=aln x--2x+3,x∈[1,+∞),
则g′(x)=+-2=.
令h(x)=-2x2+ax+1,考虑到h(0)=1>0,
当a≤1时,
h(x)=-2x2+ax+1的对称轴x=<1,
h(x)在[1,+∞)上是减函数,h(x)≤h(1)=a-1≤0,
所以g′(x)≤0,g(x)在[1,+∞)上是减函数,
所以g(x)≤g(1)=0,即f(x)≤2x2-3恒成立.
当a>1时,
令h(x)=-2x2+ax+1=0,
得x1=>1,x2=<0,
当x∈[1,x1)时,h(x)>0,即g′(x)>0,
g(x)在[1,x1)上是增函数;
当x∈(x1,+∞)时,h(x)<0,即g′(x)<0,
g(x)在(x1,+∞)上是减函数.
所以0=g(1)<g(x1),即f(x1)>2x1-3,不满足题意.
综上,a的取值范围为a≤1.(16分)
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷4练习卷(解析版) 题型:选择题
已知正方体的棱长为1,其俯视图是一个面积为1的正方形,侧视图是一个面积为的矩形,则该正方体的正视图的面积等于( )
A. B.1 C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷2练习卷(解析版) 题型:选择题
将函数y=cos x+sin x(x∈R)的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷1练习卷(解析版) 题型:填空题
函数g(x)=x2-2 013x,若g(a)=g(b),a≠b,则g(a+b)=________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年(安徽专用)高考数学(文)专题阶段评估模拟卷1练习卷(解析版) 题型:选择题
若a,b∈R,且ab>0,则下列不等式中,恒成立的是( )
A.a+b≥2 B.>
C.≥2 D.a2+b2>2ab
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练C组练习卷(解析版) 题型:解答题
设数列{bn}满足bn+2=-bn+1-bn(n∈N*),b2=2b1.
(1)若b3=3,求b1的值;
(2)求证数列{bnbn+1bn+2+n}是等差数列;
(3)设数列{Tn}满足:Tn+1=Tnbn+1(n∈N*),且T1=b1=-,若存在实数p,q,对任意n∈N*都有p≤T1+T2+T3+…+Tn<q成立,试求q-p的最小值.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练解答题押题练B组练习卷(解析版) 题型:解答题
已知函数f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练填空题押题练F组练习卷(解析版) 题型:填空题
在平面直角坐标系xOy中,直线3x+4y-5=0与圆x2+y2=4相交于A,B两点,则弦AB的长等于________.
查看答案和解析>>
科目:高中数学 来源:2013-2014学年高考数学(文)三轮专题体系通关训练填空题押题练C组练习卷(解析版) 题型:填空题
已知集合A={2,5},在A中可重复的依次取出三个数a,b,c,则“以a,b,c为边恰好构成三角形”的概率是________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com