精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=|x-a|.
(1)若不等式f(x)≤3的解集为{x|-1≤x≤5},求实数a的值;
(2)当a=1时,若f(x)+f(x+5)≥m对一切实数x恒成立,求实数m的取值范围.

分析 (1)不等式f(x)≤3就是|x-a|≤3,求出它的解集,与{x|-1≤x≤5}相同,求实数a的值;
(2)在(1)的条件下,f(x)+f(x+5)≥m对一切实数x恒成立,根据f(x)+f(x+5)的最小值≥m,可求实数m的取值范围.

解答 解:(1)由f(x)≤3得|x-a|≤3,
解得a-3≤x≤a+3.
又已知不等式f(x)≤3的解集为{x|-1≤x≤5},
所以a-3=-1且a+3=5,解得a=2.(6分)
(2)当a=1时,f(x)=|x-1|.
设g(x)=f(x)+f(x+5)=|x-1|+|x+4|,
所以当x<-4时,g(x)>5;
当-4≤x≤1时,g(x)=5;
当x>1时,g(x)>5.
综上可得,g(x)的最小值为5.
从而,若f(x)+f(x+5)≥m
即g(x)≥m对一切实数x恒成立,则m的取值范围为(-∞,5].(12分)

点评 本题考查函数恒成立问题,绝对值不等式的解法,考查转化思想,是中档题,

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.如果一个圆锥的侧面展开图恰是一个半圆,那么这个圆锥轴截面三角形的顶角为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若函数y=$\sqrt{a{x}^{2}+2ax+3}$的值域为[0,+∞),则a的取值范围是(  )
A.(3,+∞)B.[3,+∞)C.(-∞,0]∪[3,+∞)D.(-∞,0)∪[3,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知圆心为C 的圆经过点A(-3,2)和点B(1,0),且圆心C在直线y=x+1上.
(1)求圆C的标准方程.
(2)已知线段MN的端点M的坐标(3,4),另一端点N在圆C上运动,求线段MN 的中点G的轨迹方程;
(3)若直线x-y+m=0与圆C交于A B两点,当OA⊥OB 时(其中O为坐标原点),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.为了解某社区居民的家庭年收入与年支出的关系,相关部门随机调查了该社区5户家庭,得到如表统计数据表:
收入x(万元)8.28.610.011.311.9
支出y(万元)6.27.58.08.59.8
(1)根据上表可得回归直线方程 $\stackrel{∧}{y}$=$\stackrel{∧}{b}$x+$\stackrel{∧}{a}$,其中$\stackrel{∧}{b}$=0.76,$\stackrel{∧}{a}$=$\overline y$-$\stackrel{∧}{b}$$\overline x$,据此估计,该社区一户年收入为15万元的家庭年支出为多少?
(2)若从这5个家庭中随机抽选2个家庭进行访谈,求抽到家庭的年收入恰好一个不超过10万元,另一个超过11万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\overrightarrow a$•$\overrightarrow b$,其中$\overrightarrow a$=(2cosx,$\sqrt{3}$sin2x),$\overrightarrow b$=(cosx,1),x∈R.
(1)求函数y=f(x)的单调递增区间;
(2)在△ABC中,角A,B,C所对的边分别为a,b,c,f(A)=2,a=$\sqrt{7}$,且sinB=2sinC,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若直线ax+by+1=0(a、b>1)过圆x2+y2+8x+2y+1=0的圆心,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为16.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=x-ln|x|,则f(x)的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知函数f(x)=|cosx|sinx,给出下列五个说法:
①f($\frac{82}{3}$π)=-$\frac{{\sqrt{3}}}{4}$;
②若|f(x1)|=|f(x2)|,则x1=x2+kπ(k∈Z);
③f(x)在区间[-$\frac{π}{4}$,$\frac{π}{4}}$]上单调递增;
④函数f(x)的周期为π.
⑤f(x)的图象关于点($\frac{π}{2}$,0)成中心对称.
其中正确说法的序号是①③.

查看答案和解析>>

同步练习册答案