精英家教网 > 高中数学 > 题目详情
设函数f(x)=|2x-1|-|x+2|.
(1)求不等式f(x)≥3的解集;
(2)若关于x的不等式f(x)≥t2-3t在[0,1]上无解,求实数t的取值范围.
考点:绝对值不等式的解法
专题:计算题,不等式的解法及应用
分析:(1)通过对x范围的分类讨论,去掉绝对值符号,可得f(x)=
x-3,x≥
1
2
-3x-1,-2≤x<
1
2
3-x,x<-2
,再解不等式f(x)≥3即可求得其解集;
(2)当x∈[0,1]时,易求f(x)max=-1,从而解不等式t2-3t>-1即可求得实数t的取值范围.
解答: 解:(1)∵f(x)=
x-3,x≥
1
2
-3x-1,-2≤x<
1
2
3-x,x<-2

∴原不等式转化为
x≥
1
2
x-3≥3
-2≤x<
1
2
-3x-1≥3
x<-2
3-x≥3

解得:x≥6或-2≤x≤-
4
3
或x<-2,
∴原不等式的解集为:(-∞,-
4
3
]∪[6,+∞);
(2)只要f(x)max<t2-3t,
由(1)知,当x∈[0,1]时,f(x)max=-1,
∴t2-3t>-1,
解得:t>
3+
5
2
或t<
3-
5
2

∴实数t的取值范围为(-∞,
3-
5
2
)∪(
3+
5
2
,+∞).
点评:本题考查绝对值不等式的解法,通过对x范围的分类讨论,去掉绝对值符号是关键,考查转化思想与运算求解能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
ax+3 , (x≤1)
1
x
+1 ,  (x>1)
,满足对任意定义域中的x1,x2(x1≠x2),[f(x1)-f(x2)](x1-x2)<0总成立,则实数a的取值范围是(  )
A、(-∞,0)
B、[-1,0)
C、(-1,0)
D、(-1,+∞),

查看答案和解析>>

科目:高中数学 来源: 题型:

从含有两件正品和一件次品的三件产品中,每次随机取一件,连结取两次,每次取后都放回,则取出的两件产品中恰有一件次的概率为(  )
A、
1
3
B、
4
9
C、
5
9
D、
2
3

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线的离心率等于3,且与椭圆
x2
16
+
y2
7
=1
有相同的焦点,求此双曲线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)写出函数f(x)=y的单调区间,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a、b、c分别为∠A、∠B、∠C的对边,G为△ABC的重心,a
GA
+b
GB
+c
GC
=
0

(1)求
AG
+
BG
+
CG
的值;
(2)判定△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x、y满足(x+2)2+y2=1,求z=
y
x
的最小值及取得最小值时x和y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)在点x0处可导,试求下列各极限的值.
(1)
lim
△x→0
f(x0-△x)f(x0)
△x

(2)
lim
h→0
f(x0+h)-f(x0-h)
2h

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z满足
.
zi
1i
.
=1+i,则|z+1-3i|=
 

查看答案和解析>>

同步练习册答案