精英家教网 > 高中数学 > 题目详情
20.已知Sn是等比数列{an}的前n项和,a1与a3的等差中项为15,若S4=120,那么该数列的公比为3,$\frac{{S}_{2014}-{S}_{2012}}{{3}^{2012}}$=12.

分析 设出等比数列的公比q,由已知列式求出首项和公比,然后代入等比数列的通项公式得答案.

解答 解:设等比数列{an}的公比为q(q≠1),
由a1与a3的等差中项为15,且S4=120,得
$\left\{\begin{array}{l}{{a}_{1}+{a}_{1}{q}^{2}=30}\\{\frac{{a}_{1}(1-{q}^{4})}{1-q}=120}\end{array}\right.$,解得:$\left\{\begin{array}{l}{{a}_{1}=3}\\{q=3}\end{array}\right.$,
∴$\frac{{S}_{2014}-{S}_{2012}}{{3}^{2012}}$=$\frac{{a}_{2013}+{a}_{2014}}{{3}^{2012}}=\frac{{a}_{1}{q}^{2012}(1+q)}{{3}^{2012}}$=$\frac{3×{3}^{2012}(1+3)}{{3}^{2012}}=12$.
故答案为:3,12.

点评 本题考查了等差数列的性质,考查了等比数列的通项公式,考查了等比数列的前n项和,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.不求值,比较下列两组正切函数值的大小:
(1)tan167°与tan173°;
(2)tan(-$\frac{11π}{4}$)与tan(-$\frac{13π}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.某学校随机抽取部分新生调查其上学所需时间(单位:分钟),并将所得数据绘制成频率直方图(如图),其中上学所需时间的范围是[0,100],样本数据分组为[0,20),[20,40),[40,60),[60,80),[80,100].
(Ⅰ)求直方图中x的值;
(Ⅱ)如果上学所需时间不小于1小时的学生中可以申请在学校住宿,请估计学校600名新生中有多少名学生可以住宿?
(Ⅲ)从(Ⅱ)问中的可以留宿的学生人数中选定其中$\frac{1}{12}$的学生分成男女两组,假设男女人数比例为2:1,那么从这两组中共抽调2人出来列席学校的教代会,则性别不同的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知集合A={a1,a2,…,an}中的元素都是正整数,且al<a2<…<an,集合A具有性质P:对任意的x,y∈A,且x≠y,有|x-y|≥$\frac{xy}{25}$.给出下列命题:
①集合{1,2,3,4}不具有性质P;    
②$\frac{1}{a_1}-\frac{1}{a_n}≥\frac{n-1}{25}$;
③不等式i(n-i)<25对于i=1,2,…,n-1均成立;  
④A中最多可以有10个元素.
其中正确命题的序号是②③(将所有正确命题的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知A1,A2,F1,F2分别是椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点和左、右焦点,过F2引一条直线与椭圆交于M,N两点,△MF1N的周长为8,且|F2A2|=1.
(1)求椭圆E的方程;
(2)过点P(-3,0)且斜率不为零的直线l与椭圆交于不同的两点A,B,C,D为椭圆上不同于A,B的另外两点,满足$\overrightarrow{A{F}_{2}}$=λ$\overrightarrow{{F}_{2}C}$,$\overrightarrow{B{F}_{2}}$=μ$\overrightarrow{{F}_{2}D}$,且λ+μ=$\frac{13}{3}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设F1、F2为椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1上的两个焦点,P点在椭圆上,若△PF1F2是直角三角形,则△PF1F2的面积为6$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知抛物线y2=4x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,O是坐标原点,点A、B是两曲线的交点,若($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{AF}$=0,则双曲线的实轴长为2$\sqrt{2}$-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}的前n项和为Sn,a1+a2=16且Sn=2Sn-1+n+4(n≥2,n∈N*).
(1)求数列{an}的通项公式an
(Ⅱ)令bn=nan,求{bn}的前n项和Tn.并判断是否存在唯一且不等于1的n使Tn=22n-17成立?若存在求出n值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知直线ax+y+1=0经过抛物线y2=4x的焦点,则直线与抛物线相交弦弦长为(  )
A.6B.7C.8D.9

查看答案和解析>>

同步练习册答案