精英家教网 > 高中数学 > 题目详情
12.已知抛物线y2=4x与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)有相同的焦点F,O是坐标原点,点A、B是两曲线的交点,若($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{AF}$=0,则双曲线的实轴长为2$\sqrt{2}$-2.

分析 求出抛物线的焦点(1,0),即有双曲线的两个焦点,设A(m,n),B(m,-n)(m>0,n>0),运用向量的数量积的定义可得m=1,n=2,再由双曲线的定义可得结论.

解答 解:由抛物线y2=4x的焦点F(1,0),可得双曲线的焦点为F(1,0)和F′(-1,0),
设A(m,n),B(m,-n)(m>0,n>0),
则$\overrightarrow{AF}$=(1-m,-n),
由($\overrightarrow{OA}$+$\overrightarrow{OB}$)•$\overrightarrow{AF}$=0,
即为2m(1-m)+0=0,
解得m=1或m=0(舍去),
即有A(1,2),
由双曲线的定义可得|AF′|-|AF|=2a,
即为2$\sqrt{2}$-2=2a,
即双曲线的实轴长为2$\sqrt{2}$-2.
故答案为:2$\sqrt{2}$-2.

点评 本题考查抛物线和双曲线的定义、方程和性质,主要考查双曲线的定义和离心率的求法,同时考查向量的数量积的坐标表示,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.已知f(x)=(x2+x+1)n(n∈N*),g(x)是关于x的2n次多项式;
(1)若f(x2)g(x)=g(x3)恒成立,求g(1)和g(-1)的值;并写出一个满足条件的g(x)的表达式,无需证明.
(2)求证:对于任意给定的正整数n,都存在与x无关的常数a0,a1,a2,…,an,使得f(x)=a0(1+x2n)+a1(x+x2n-1)+a2(x2+x2n-2)+…+an-1(xn-1+xn+1)+anxn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=x+$\frac{a}{x}$-4,g(x)=kx+3
(Ⅰ)当a∈[3,4]时,函数f(x)在区间[1,m]上的最大值为f(m),试求实数m的取值范围
(Ⅱ)当a∈[1,2]时,若不等式|f(x1)|-|f(x2)|<g(x1)-g(x2),对任意x1,x2∈[2,4](x1<x2)恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知Sn是等比数列{an}的前n项和,a1与a3的等差中项为15,若S4=120,那么该数列的公比为3,$\frac{{S}_{2014}-{S}_{2012}}{{3}^{2012}}$=12.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.求函数f(x)=$\frac{sinx}{2}$+$\frac{2}{sinx}$(0<x<π)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.化简:sin(α+60°)cosα-sin(α-30°)sinα.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.用数学归纳法证明:对大于1的整数n,有3n>n+3恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知点A(2,1)、B(4,5)、M(x,y)为动点,O为原点,若$\overrightarrow{OA}$与$\overrightarrow{OM}$在$\overrightarrow{OB}$方向上的投影相等,则点M的轨迹方程为4x+5y=13.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知抛物线x2=2py(p>0)的焦点为F,A(x1,y1)、B(x2,y2)是过F的直线与抛物线的两个交点,求证:
(1)x1x2=-p2,y1y2=$\frac{p2}{4}$;
(2)$\frac{1}{|AF|}$+$\frac{1}{|BF|}$为定值;
(3)以AB为直径的圆与抛物线的准线相切.

查看答案和解析>>

同步练习册答案