精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四边形ABCD与四边形BDEF均为菱形,,且

求证:平面BDEF

求二面角的余弦值.

【答案】(1)见证明;(2).

【解析】

ACBD交于点O,连结OFDF,推导出,由此能证明平面BDEF

OAx轴,OBy轴,OFz轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.

ACBD交于点O,连结OFDF

四边形ABCD与四边形BDEF均为菱形,,且

四边形ABCD与四边形BDEF均为菱形,

平面BDEF

平面ABCD

OAx轴,OBy轴,OFz轴,建立空间直角坐标系,

,则0,0,1,0,

1,

设平面ABF的法向量y

,取,得

设平面BCF的法向量y

,取,得

设二面角的平面角为,由图可知为钝角

二面角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某工厂修建一个长方体无盖蓄水池,其容积为4 800立方米,深度为3米.池底每平方米的造价为150元,池壁每平方米的造价为120元.设池底长方形长为x米.

1)求底面积,并用含x的表达式表示池壁面积;

2)怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在直角坐标系中,曲线的参数方程为为参数),直线的参数方程为为参数).

(1)求的直角坐标方程;

(2)若曲线截直线所得线段的中点坐标为,求的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在测试中,客观题难题的计算公式为,其中为第题的难度,为答对该题的人数,为参加测试的总人数.现对某校高三年级120名学生进行一次测试,共5道客观题.测试前根据对学生的了解,预估了每道题的难度,如下表所示:

题号

1

2

3

4

5

考前预估难度

0.9

0.8

0.7

0.6

0.4

测试后,从中随机抽取了10名学生,将他们编号后统计各题的作答情况,如下表所示(“√”表示答对,“×”表示答错):

学生 编号

题号

1

2

3

4

5

1

×

2

×

3

×

4

×

×

5

6

×

×

×

7

×

×

8

×

×

×

×

9

×

×

×

10

×

(1)根据题中数据,将抽样的10名学生每道题实测的答对人数及相应的实测难度填入下表,并估计这120名学生中第5题的实测答对人数;

题号

1

2

3

4

5

实测答对人数

实测难度

(2)从编号为1到5的5人中随机抽取2人,求恰好有1人答对第5题的概率;

(3)定义统计量,其中为第题的实测难度,为第题的预估难度().规定:若,则称该次测试的难度估合理,否则为不合理.判断本次测试的难度预估是否合理.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】奇函数fx)在区间(-∞,0)上单调递减,且f(-1)=0,则不等式(x-1)fx-1)<0的解集是(  )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知某市2015年全年空气质量等级如表1所示.

1

空气质量等级(空气质量指数(AQI))

频数

频率

优(

83

22.8%

良(

121

33.2%

轻度污染(

68

18.6%

中度污染(

49

13.4%

重度污染(

30

8.2%

严重污染(

14

3.8%

合计

365

100%

20165月和6月的空气质量指数如下:

5 240 80 56 53 92 126 45 87 56 60

191 62 55 58 56 53 89 90 125 124

103 81 89 44 34 53 79 81 62 116

88

6 63 92 110 122 102 116 81 163 158 76

33 102 65 53 38 55 52 76 99 127

120 80 108 33 35 73 82 90 146 95

选择合适的统计图描述数据,并回答下列问题:

1)分析该市20166月的空气质量情况.

2)比较该市20165月和6月的空气质量,哪个月的空气质量较好?

3)比较该市20166月与该市2015年全年的空气质量,20166月的空气质量是否好于去年?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知

1)如果函数的单调递减区间为,求函数的解析式;

2)在(1)的条件下,求函数的图象在点处的切线方程;

3)若不等式恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下表是我国某城市在2017年1月份至10月份各月最低温与最高温 的数据一览表

已知该城市的各月最低温与最高温具有线性相关关系,根据该一览表,则下列结论错误的是 ( )

A. 最低温与最高温为正相关

B. 每月最高温与最低温的平均值前8个月逐月增加

C. 月温差(最高温减最低温)的最大值出现在1月

D. 1月至4月的月温差(最高温减最低温)相对于7月至10月,波动性更大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设数列的首项,前项和满足关系式.

(1)求证:数列是等比数列;

(2)设数列的公比为,作数列,使,求数列的通项公式;

(3)数列满足条件(2),求和:.

查看答案和解析>>

同步练习册答案