精英家教网 > 高中数学 > 题目详情

【题目】已知

1)如果函数的单调递减区间为,求函数的解析式;

2)在(1)的条件下,求函数的图象在点处的切线方程;

3)若不等式恒成立,求实数a的取值范围.

【答案】(1)(2)(3)

【解析】

1)求gx)的导数,利用函数gx)单调减区间为(1),即是方程g'x)=0的两个根.然后解a即可.(2)利用导数的几何意义求切线方程.(3)将不等式2fx)≥g′(x+2成立,转化为含参问题恒成立,然后利用导数求函数的最值即可.

1由题意的解集是:

的两根分别是1

代入方程.∴

2)由(1)知:,∴

∴点处的切线斜率

∴函数的图象在点处的切线方程为:,即

3)∵,即:上恒成立

可得上恒成立

,则

,得(舍)

时,;当时,

∴当时,取得最大值的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若函数的图像与轴无交点,求的取值范围;

(2)若方程在区间上存在实根,求的取值范围;

(3)设函数,当时若对任意的,总存在,使得,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在等腰梯形ABCD中,ABDCAB2BC1,∠ABC60°.动点EF分别在线段BCDC上,且

1)当λ,求||

2)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四边形ABCD与四边形BDEF均为菱形,,且

求证:平面BDEF

求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校初中部共120名教师,高中部共180名教师,其性别比例如图所示,已知按分层抽样方法得到的工会代表中,高中部女教师有6人,则工会代表中男教师的总人数为________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】等差数列和等比数列中, 项和.

(1)若 ,求实数的值;

(2)是否存在正整数,使得数列的所有项都在数列中?若存在,求出所有的,若不存在,说明理由;

(3)是否存在正实数,使得数列中至少有三项在数列中,但中的项不都在数列中?若存在,求出一个可能的的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,过且斜率为的直线交抛物线于两点.若线段的垂直平分线与轴交于点,则( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)讨论函数的单调性;

(2)若对任意,都有恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在试验E“连续抛掷一枚骰子2次,观察每次掷出的点数”中,事件A表示随机事件“第一次掷出的点数为1”,事件表示随机事件“第一次掷出的点数为1,第二次掷出的点数为j,事件B表示随机事件“2次掷出的点数之和为6”,事件C表示随机事件“第二次掷出的点数比第一次的大3”,

1)试用样本点表示事件

2)试判断事件ABACBC是否为互斥事件;

3)试用事件表示随机事件A.

查看答案和解析>>

同步练习册答案