精英家教网 > 高中数学 > 题目详情
1.若数列{an}是等比数列,Sn是其前n项和,且Sn=2n-a,则a=1.

分析 利用递推关系、等比数列的定义通项公式即可得出.

解答 解:∵Sn=2n-a,
∴a1=S1=2-a;
n≥2时,an=Sn-Sn-1=2n-a-(2n-1-a)=2n-1
∵数列{an}是等比数列,
∴上式对于n=1时也成立,
∴1=2-a,解得a=1.
故答案为:1.

点评 本题考查了等比数列的通项公式及其性质、求和公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.在一次数学竞赛中,30名参赛学生的成绩(百分制)的茎叶图如图所示:若将参赛学生按成绩由高到低编为1-30号,再用系统抽样法从中抽取6人,则其中抽取的成绩在[77,90]内的学生人数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知sin($\frac{π}{2}$+θ)=-$\frac{1}{2}$,则2sin2$\frac{θ}{2}$-1(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{\sqrt{3}}{2}$D.±$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=alnx-$\frac{b}{x}$,g(x)=-3x+4.
(1)若函数f(x)在点(1,f(1))处的切线为2x-y-3=0,求a,b的值;
(2)若b=-1,当x≥1时,f(x)≥g(x)恒成立,求实数a的取值范围;
(3)求证:对于一切正整数n,恒有$\frac{2}{4×{1}^{2}-1}$+$\frac{3}{4×{2}^{2}-1}$+$\frac{4}{4×{3}^{2}-1}$+…+$\frac{n+1}{4×{n}^{2}-1}$>$\frac{1}{4}$ln(2n+1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.定义在R上的函数f(x)及其导函数f′(x)的图象都是连续不断的曲线,且对于实数a,b(a<b),有f′(a)>0,f′(b)<0.现给出如下结论:
①?x0∈[a,b],f(x0)=0;
②?x0∈[a,b],f(x0)>f(b);
③?x0∈[a,b],f(x0)≥f(a);
④?x0∈[a,b],f(a)-f(b)=f'(x0)(a-b).
其中结论正确的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.将函数y=cos(2x-$\frac{π}{6}$)的图象向左平移$\frac{1}{4}$个周期后,所得图象对应的解析式(  )
A.y=cos(2x+$\frac{π}{12}$)B.y=cos(2x+$\frac{π}{3}$)C.y=cos(2x-$\frac{2π}{3}$)D.y=cos(2x-$\frac{5π}{12}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C(单位:万元)与隔热层厚度x(单位:cm)满足关系:C(x)=$\frac{40}{3x+5}$(1≤x≤10),设f(x)为隔热层建造费用与20年的能源消耗费用之和.
(Ⅰ)求f(x)的表达式;
(Ⅱ)隔热层修建多厚对,总费用f(x)达到最小,并求最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)=$\left\{\begin{array}{l}{a{x}^{2}-2ax+1(x≤-1)}\\{(a-1)x+4a(x>-1)}\end{array}\right.$在(-∞,+∞)内是减函数,则实数a的取值范围是(  )
A.(-∞,1)B.(-∞,0)C.(1,+∞)D.(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,AB是圆O的直径,弦CE交AB于D,CD=4$\sqrt{2}$,DE=$\sqrt{2}$,BD=2.
(I)求圆O的半径R;
(Ⅱ)求线段BE的长.

查看答案和解析>>

同步练习册答案