| A. | (-∞,1) | B. | (-∞,0) | C. | (1,+∞) | D. | (0,1) |
分析 分别求出x>-1时或x≤-1时函数为减函数的a的取值范围,再根据在R上为减函数得到5a+1<3a-1,解得即可.
解答 解:当x>-1时,f(x)=(a-1)x+4a在(-1,+∞)为减函数,
则a-1<0,解得a<1,此时f(x)max=f(-1)=5a-1,
当x≤-1时,f(x)=ax2-2ax+1在(-∞,-1]为减函数,其对称轴为x=1,
则a>0,此时f(x)min=f(-1)=3a+1,
∵f(x)=$\left\{\begin{array}{l}{a{x}^{2}-2ax+1(x≤-1)}\\{(a-1)x+4a(x>-1)}\end{array}\right.$在(-∞,+∞)内是减函数,
∴5a+1<3a-1,
解得a<1,
综上所述a的取值范围为(0,1).
故选:D.
点评 本题考查了分段函数和函数的单调性以及参数的取值范围,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|x<2} | B. | {x|x<-1或x≥2} | C. | {x|x≥2} | D. | {x|x<-1或x>2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 姓名/成绩 | 1 | 2 | 3 | 4 | 5 | 6 |
| 甲 | 125 | 110 | 86 | 83 | 132 | 92 |
| 乙 | 108 | 116 | 89 | 123 | 126 | 113 |
| A. | ${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,甲比乙成绩稳定 | B. | ${\overline{x}}_{甲}$>${\overline{x}}_{乙}$,乙比甲成绩稳定 | ||
| C. | ${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,甲比乙成绩稳定 | D. | ${\overline{x}}_{甲}$<${\overline{x}}_{乙}$,乙比甲成绩稳定 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {x|0<x<2} | B. | {x|0<x<1} | C. | {x|0<x≤1} | D. | {x|0<x≤2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1} | B. | {-3,-2} | C. | {-3,2} | D. | {-3,-2,1,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 在x=e处取得极小值 | B. | 在x=e处取得极大值 | ||
| C. | 在x=$\frac{1}{e}$处取得极小值 | D. | 在x=$\frac{1}{e}$处取得极大值 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com