精英家教网 > 高中数学 > 题目详情
8.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,6秒旋转一周.已知时间t=0时,点A的坐标是($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),则当0≤t≤6时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间是(  )
A.[0,1]B.[4,6]C.[1,3]D.[0,1]和[4,6]

分析 由已知求出动点A的纵坐标y关于t(单位:秒)的函数为:y=sin($\frac{π}{3}$x+$\frac{π}{6}$),结合正弦函数的单调性,可得当0≤t≤6时,动点A的纵坐标y关于t(单位:秒)的函数的单调递增区间.

解答 解:∵动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,故A=1,
6秒旋转一周,故T=6,ω=$\frac{π}{3}$,
时间t=0时,点A的坐标是($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$),故φ=$\frac{π}{6}$,
故动点A的纵坐标y关于t(单位:秒)的函数为:y=sin($\frac{π}{3}$x+$\frac{π}{6}$),
由$\frac{π}{3}$x+$\frac{π}{6}$∈[-$\frac{π}{2}$+2kπ,$\frac{π}{2}$+2kπ],k∈Z得:x∈[-2+6k,1+6k],k∈Z,
即函数y=sin($\frac{π}{3}$x+$\frac{π}{6}$)的单调增区间为[-2+6k,1+6k],k∈Z,
又∵0≤t≤6,
∴单调增区间为[0,1],[4,6],
故选:D

点评 本题考查的知识点是正弦型函数的解析式,复合函数的单调性,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数$f(x)=\sqrt{3+2x-{x^2}}$的定义域为A,集合B={x|x2-2mx+m2-9≤0}.
(1)若A∩B=[2,3],求实数m的值;
(2)若?x1∈A,?x2∈(CRB),使x2=x1,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知f(x)=asin2x-$\frac{1}{3}$sin3x(a为常数),在x=$\frac{π}{3}$处取得极值,则a=(  )
A.$\frac{1}{2}$B.1C.$\frac{2}{3}$D.$-\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知圆x2+y2=16的圆心为P,点Q(a,b)在圆P外,以PQ为直径作圆M与圆P相交于A,B两点.
(1)试确定直线QA,QB与圆P的位置关系,若QA=QB=3,写出点Q所在曲线的方程;
(2)若a=4,b=6,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.f(x)=$\frac{1}{2}{x^2}$-ax+(a-1)lnx,
(1)当a=3时,求f(x)的极值点;
(2)当a<1时,求f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=(x-3)ex的单调增区间是(  )
A.(-∞,2)B.(2,+∞)C.(1,4)D.(0,3)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数式f(n)表示n2+1(n∈N*)的各位上的数字之和,
如142+1=197,1+9+7=17所以f(14)=17,
记f1(n)=f(n),f2(n)=f[f1(n)],…,fk+1(n)=f[fk(n)],k∈N*
则f2010(17)=8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若定义在R上的可导函数f(x)的导函数为f′(x),在R上满足f′(x)>f(x),且y=f(x-3)为奇函数,f(-6)=-3,则不等式f(x)<3ex的解集为(  )
A.(0,+∞)B.(-3,+∞)C.(-∞,0)D.(-∞,6)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=lnx+$\frac{a}{x+1}$,a∈R
(1)当a=2时,试比较f(x)与1的大小;
(2)求证:ln(n+1)>$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+…+$\frac{1}{2n+1}$(n∈N*

查看答案和解析>>

同步练习册答案