精英家教网 > 高中数学 > 题目详情

【题目】设平面内有n条直线(n≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用f(n)表示这n条直线交点的个数,当n>4时,f(n)=

【答案】 (n+1)(n﹣2)
【解析】解:∵f(3)=2, f(4)=f(3)+3,
f(5)=f(4)+4,

f(n﹣1)=f(n﹣2)+n﹣2,
f(n)=f(n﹣1)+n﹣1,
累加可得:f(n)=2+3+…+(n﹣2)+(n﹣1)
= (n﹣2)(n﹣1+2)= (n+1)(n﹣2)
所以答案是: (n+1)(n﹣2)
【考点精析】解答此题的关键在于理解归纳推理的相关知识,掌握根据一类事物的部分对象具有某种性质,退出这类事物的所有对象都具有这种性质的推理,叫做归纳推理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(本小题满分10分)选修4-5:不等式选讲

已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).

(1)当m=7时,求函数f(x)的定义域;

(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列函数是偶函数的是(
A.y=1﹣lg|x|
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=﹣ ﹣ax+a,在区间[﹣2,2]有最小值﹣3
(1)求实数a的值,
(2)求函数的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设命题:实数满足,其中;命题:实数满足.

(1)若,且为真,求实数的取值范围;

(2)若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列中, .

(1)证明:数列为等差数列;

(2)求数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x+1)的定义域为[﹣1,0],则函数f( ﹣2)的定义域为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x+ (x>0,m>0)和函数g(x)=a|x﹣b|+c(x∈R,a>0,b>0).问:
(1)证明:f(x)在( ,+∞)上是增函数;
(2)把函数g1(x)=|x|和g2(x)=|x﹣1|写成分段函数的形式,并画出它们的图象,总结出g2(x)的图象是如何由g1(x)的图象得到的.请利用上面你的结论说明:g(x)的图象关于x=b对称;
(3)当m=1,b=2,c=0时,若f(x)>g(x)对于任意的x>0恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=cos(2x﹣ )+2sin(x﹣ )cos(x﹣ ).
(1)求函数f(x)的最小正周期和图象的对称轴方程.
(2)求函数f(x)在区间[﹣ ]上的值域.

查看答案和解析>>

同步练习册答案