精英家教网 > 高中数学 > 题目详情
10.如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则$\frac{AB}{AC}$=$\frac{1}{2}$.

分析 利用切割线定理推出PA=2PB,利用相似三角形求出比值即可.

解答 解:由切割线定理可知:PA2=PB•PC,又BC=3PB,
可得PA=2PB,
在△PAB与△PAC中,∠P=∠P,∠PAB=∠PCA(同弧上的圆周角与弦切角相等),
可得△PAB∽△PAC,
∴$\frac{AB}{AC}=\frac{PB}{PA}$=$\frac{PB}{2PB}$=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.

点评 本题考查切割线定理以及相似三角形的判定与应用,考查逻辑推理能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.lg0.01+log216的值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数为奇函数的是(  )
A.y=$\sqrt{x}$B.y=|sinx|C.y=cosxD.y=ex-e-x

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)的图象是由函数g(x)=cosx的图象经如下变换得到:先将g(x)图象上所有点的纵坐标伸长到原来的2倍,横坐标不变,再将所得到的图象向右平移$\frac{π}{2}$个单位长度.
(1)求函数f(x)的解析式,并求其图象的对称轴方程;
(2)已知关于x的方程f(x)+g(x)=m在[0,2π)内有两个不同的解α,β
(i)求实数m的取值范围;
(ii)证明:cos(α-β)=$\frac{2m^2}{5}$-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设a1,a2,…,an∈R,n≥3.若p:a1,a2,…,an成等比数列;q:(a12+a22+…+an-12)(a22+a32+…+an2)=(a1a2+a2a3+…+an-1an2,则(  )
A.p是q的充分条件,但不是q的必要条件
B.p是q的必要条件,但不是q的充分条件
C.p是q的充分必要条件
D.p既不是q的充分条件,也不是q的必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的各项均为正数,bn=n(1+$\frac{1}{n}$)nan(n∈N+),e为自然对数的底数.
(1)求函数f(x)=1+x-ex的单调区间,并比较(1+$\frac{1}{n}$)n与e的大小;
(2)计算$\frac{{b}_{1}}{{a}_{1}}$,$\frac{{b}_{1}{b}_{2}}{{a}_{1}{a}_{2}}$,$\frac{{b}_{1}{{b}_{2}b}_{3}}{{a}_{1}{a}_{2}{a}_{3}}$,由此推测计算$\frac{{b}_{1}{b}_{2}…{b}_{n}}{{a}_{1}{a}_{2}…{a}_{n}}$的公式,并给出证明;
(3)令cn=(a1a2…an)${\;}^{\frac{1}{n}}$,数列{an},{cn}的前n项和分别记为Sn,Tn,证明:Tn<eSn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=$\left\{\begin{array}{l}{2-|x|,x≤2}\\{(x-2)^{2},x>2}\end{array}\right.$,函数g(x)=3-f(2-x),则函数y=f(x)-g(x)的零点个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.计算:log2$\frac{\sqrt{2}}{2}$=$-\frac{1}{2}$,2${\;}^{lo{g}_{2}3+lo{g}_{4}3}$=$3\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设x,y∈R,满足$\left\{\begin{array}{l}{(x-1)^{5}+2x+sin(x-1)=3}\\{(y-1)^{5}+2y+sin(y-1)=1}\end{array}\right.$,则x+y=(  )
A.0B.2C.4D.6

查看答案和解析>>

同步练习册答案