| A. | 0 | B. | 2 | C. | 4 | D. | 6 |
分析 根据条件,构造函数f(t)=t5+2t+sint,利用函数f(t)的奇偶性和单调性解方程即可.
解答 解:∵(x-1)5+2x+sin(x-1)=3,
∴(x-1)5+2(x-1)+sin(x-1)=3-2=1,
∵(y-1)5+2y+sin(y-1)=1,
∴(y-1)3+2(y-1)+sin(y-1)=1-2=-1,
设f(t)=t5+2t+sint,
则f(t)为奇函数,且f'(t)=5t4+2+cost>0,
即函数f(t)单调递增.
由题意可知f(x-1)=1,f(y-1)=-1,
即f(x-1)+f(y-1)=1-1=0,
即f(x-1)=-f(y-1)=f(1-y),
∵函数f(t)单调递增
∴x-1=1-y,
即x+y=2,
故选B.
点评 本题主要考查函数奇偶性和单调性的应用,利用条件构造函数f(t)是解决本题的关键,综合考查了函数的性质.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 存在n∈N,使得Sn+1=32$\sqrt{2}$a2b | B. | 存在n∈N,使得Sn+1=16$\sqrt{2}$a2b | ||
| C. | 对于任意n∈N,使得Sn+1≤32$\sqrt{2}$a2b | D. | 对于任意n∈N,使得Sn+1≥16$\sqrt{2}$a2b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1:6 | B. | 1:5 | C. | 1:4 | D. | 1:3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,$\frac{π}{6}$] | B. | (0,$\frac{π}{3}$] | C. | [$\frac{π}{6}$,π) | D. | [$\frac{π}{3}$,π) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | 4 | C. | 2$\sqrt{3}$ | D. | 2$\sqrt{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com