精英家教网 > 高中数学 > 题目详情
19.计算:log2$\frac{\sqrt{2}}{2}$=$-\frac{1}{2}$,2${\;}^{lo{g}_{2}3+lo{g}_{4}3}$=$3\sqrt{3}$.

分析 直接利用对数运算法则化简求值即可.

解答 解:log2$\frac{\sqrt{2}}{2}$=log2${2}^{-\frac{1}{2}}$=-$\frac{1}{2}$;
2${\;}^{lo{g}_{2}3+lo{g}_{4}3}$=${2}^{{\;}^{lo{g}_{2}3+\frac{1}{2}lo{g}_{2}3}}$=${2}^{{\;}^{lo{g}_{2}(3•{3}^{\frac{1}{2}})}}$=3$\sqrt{3}$.
故答案为:$-\frac{1}{2}$;$3\sqrt{3}$.

点评 本题考查对数的运算法则的应用,基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.已知椭圆E:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F,短轴的一个端点为M,直线l:3x-4y=0交椭圆E于A,B两点,若|AF|+|BF|=4,点M到直线l的距离不小于$\frac{4}{5}$,则椭圆E的离心率的取值范围是(  )
A.(0,$\frac{\sqrt{3}}{2}$]B.(0,$\frac{3}{4}$]C.[$\frac{\sqrt{3}}{2}$,1)D.[$\frac{3}{4}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,PA是圆的切线,A为切点,PBC是圆的割线,且BC=3PB,则$\frac{AB}{AC}$=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.设甲、乙、丙三个乒乓球协会的运动员人数分别为27,9,18,先采用分层抽取的方法从这三个协会中抽取6名运动员组队参加比赛.
(Ⅰ)求应从这三个协会中分别抽取的运动员的人数;
(Ⅱ)将抽取的6名运动员进行编号,编号分别为A1,A2,A3,A4,A5,A6,现从这6名运动员中随机抽取2人参加双打比赛.
(i)用所给编号列出所有可能的结果;
(ii)设A为事件“编号为A5和A6的两名运动员中至少有1人被抽到”,求事件A发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设a,b是实数,则“a+b>0”是“ab>0”的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知实数x,y满足x2+y2≤1,则|2x+y-4|+|6-x-3y|的最大值是15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}+{y}^{2}$=1(a>0)的右焦点F,直线l0过点F且l0⊥x轴,l0与C相交于A,B两点,|AB|=$\frac{2\sqrt{3}}{3}$.
(1)求椭圆C的方程;
(2)过C上一点P(x0,y0)(y0≠0)的直线l:$\frac{{x}_{0}x}{{a}^{2}}+{y}_{0}$y=1与直线l0相交于点M,与直线l1:x=$\frac{3\sqrt{2}}{2}$相交于点N,证明:点P在C上移动时,$\frac{|MF|}{|NF|}$恒为定值,并求此定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.An(n∈N)系列的纸张规格如图,其特点是
①A0,A1,A2,…An所有规格的纸张的长宽比都相同;
②A0对裁后可以得到两张A1,A1对裁后可以得到两张A2,…,An-1对裁后可以得到两张An
若梅平方厘米重量为b克的A0,A1,A2,…An纸张各一张,其中A4纸较短边的长为a厘米,记这(n+1)纸张的重量之和为Sn+1,则下列论断错误的是(  )
A.存在n∈N,使得Sn+1=32$\sqrt{2}$a2bB.存在n∈N,使得Sn+1=16$\sqrt{2}$a2b
C.对于任意n∈N,使得Sn+1≤32$\sqrt{2}$a2bD.对于任意n∈N,使得Sn+1≥16$\sqrt{2}$a2b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某四面体的三视图如图所示,正视图、俯视图都是腰长为2的等腰直角三角形,侧视图是边长为2的正方形,则此四面体的四个面中面积最大的为(  )
A.2$\sqrt{2}$B.4C.2$\sqrt{3}$D.2$\sqrt{6}$

查看答案和解析>>

同步练习册答案