1£®ÒÑÖªÍÖÔ²C1£º$\frac{y^2}{a^2}$+$\frac{x^2}{b^2}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊe=$\frac{{\sqrt{3}}}{3}$£¬ÇÒ¾­¹ýµã£¨1£¬$\frac{{\sqrt{6}}}{2}$£©£¬Å×ÎïÏßC2£ºx2=2py£¨p£¾0£©µÄ½¹µãFÓëÍÖÔ²C1µÄÒ»¸ö½¹µãÖØºÏ£®
£¨¢ñ£©¹ýFµÄÖ±ÏßÓëÅ×ÎïÏßC2½»ÓÚM£¬NÁ½µã£¬¹ýM£¬N·Ö±ð×÷Å×ÎïÏßC2µÄÇÐÏßl1£¬l2£¬ÇóÖ±Ïßl1£¬l2µÄ½»µãQµÄ¹ì¼£·½³Ì£»
£¨¢ò£©´ÓÔ²O£ºx2+y2=5ÉÏÈÎÒâÒ»µãP×÷ÍÖÔ²C1µÄÁ½ÌõÇÐÏߣ¬ÇеãΪA£¬B£¬Ö¤Ã÷£º¡ÏAPBΪ¶¨Öµ£¬²¢Çó³öÕâ¸ö¶¨Öµ£®

·ÖÎö £¨¢ñ£©ÉèÍÖÔ²µÄ°ë½¹¾àΪc£¬ÒÔ¼°$\frac{c}{a}=\frac{{\sqrt{3}}}{3}$£¬ÉèÍÖÔ²·½³ÌΪ$\frac{y^2}{{3{c^2}}}+\frac{x^2}{{2{c^2}}}=1$£¬½«µã$£¨1£¬\frac{{\sqrt{6}}}{2}£©$µÄ×ø±ê´úÈëµÃc£¬È»ºóÇó½âÍÖÔ²·½³Ì£¬Çó³öÅ×ÎïÏß·½³Ì£¬ÉèÖ±ÏßMN£ºy=kx+1£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬´úÈëÅ×ÎïÏß·½³ÌµÃx2-4kx-4=0£¬ÀûÓÃΤ´ï¶¨Àí½áºÏº¯ÊýµÄµ¼ÊýÇó½âÖ±ÏßµÄбÂÊ£¬Ö±Ïß·½³Ì£¬Çó³öµãQµÄºá×ø±êÊÇ$\frac{1}{2}£¨{x_1}+{x_2}£©$£¬µãQµÄ×Ý×ø±ê£¬È»ºóÇó½âµãQµÄ¹ì¼£·½³Ì£®
£¨¢ò£©¢Ùµ±Á½ÇÐÏßµÄÖ®Ò»µÄбÂʲ»´æÔÚʱ£¬¸ù¾Ý¶Ô³ÆÐÔ£¬ÉèµãPÔÚµÚÒ»ÏóÏÞ£¬Çó½â¡ÏAPBµÄ´óСΪ¶¨Öµ£®
¢Úµ±Á½ÌõÇÐÏßµÄбÂʶ¼´æÔÚʱ£¬¼´$x¡Ù¡À\sqrt{2}$ʱ£¬ÉèP£¨x0£¬y0£©£¬ÇÐÏßµÄбÂÊΪk£¬ÔòÇÐÏß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢£¬ÀûÓá÷=0£¬ÇÐÏßPA£¬PBµÄбÂÊk1£¬k2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£¬Í¨¹ý${k_1}{k_2}=-\frac{y_0^2-3}{2-x_0^2}$£¬Çó½â¡ÏAPBµÄ´óСΪ¶¨Öµ$\frac{¦Ð}{2}$£®

½â´ð ½â£º£¨¢ñ£©ÉèÍÖÔ²µÄ°ë½¹¾àΪc£¬Ôò$\frac{c}{a}=\frac{{\sqrt{3}}}{3}$£¬¼´$a=\sqrt{3}c$£¬Ôò$b=\sqrt{2}c$£¬
ÍÖÔ²·½³ÌΪ$\frac{y^2}{{3{c^2}}}+\frac{x^2}{{2{c^2}}}=1$£¬½«µã$£¨1£¬\frac{{\sqrt{6}}}{2}£©$µÄ×ø±ê´úÈëµÃc2=1£¬
¹ÊËùÇóµÄÍÖÔ²·½³ÌΪ$\frac{y^2}{3}+\frac{x^2}{2}=1$½¹µã×ø±êΪ£¨0£¬¡À1£©£¬
¹ÊÅ×ÎïÏß·½³ÌΪx2=4y¡­£¨2·Ö£©
ÉèÖ±ÏßMN£ºy=kx+1£¬M£¨x1£¬y1£©£¬N£¨x2£¬y2£©£¬´úÈëÅ×ÎïÏß·½³ÌµÃx2-4kx-4=0£¬
Ôòx1+x2=4k£¬x1x2=-4£¬ÓÉÓÚ$y=\frac{1}{4}{x^2}$£¬ËùÒÔ$y'=\frac{1}{2}x$£¬¹ÊÖ±Ïßl1µÄбÂÊΪ$\frac{1}{2}{x_1}$£¬l1µÄ·½³ÌΪ$y-\frac{1}{4}x_1^2=\frac{1}{2}{x_1}£¨x-{x_1}£©$£¬¼´$y=\frac{1}{2}{x_1}x-\frac{1}{4}x_1^2$£¬
ͬÀíl2µÄ·½³ÌΪ$y=\frac{1}{2}{x_2}x-\frac{1}{4}x_2^2$£¬
Áî$\frac{1}{2}{x_1}x-\frac{1}{4}x_1^2=\frac{1}{2}{x_2}x-\frac{1}{4}x_2^2$£¬¼´$£¨{x_1}-{x_2}£©x=\frac{1}{2}£¨{x_1}-{x_2}£©£¨{x_1}+{x_2}£©$£¬ÏÔÈ»x1¡Ùx2£¬
¹Ê$x=\frac{1}{2}£¨{x_1}+{x_2}£©$£¬¼´µãQµÄºá×ø±êÊÇ$\frac{1}{2}£¨{x_1}+{x_2}£©$£¬
µãQµÄ×Ý×ø±êÊÇ$y=\frac{1}{2}{x_1}x-\frac{1}{4}x_1^2=\frac{1}{4}{x_1}£¨{x_1}+{x_2}£©-\frac{1}{4}x_1^2=\frac{1}{4}{x_1}{x_2}=-1$£¬¼´µãQ£¨2k£¬-1£©£¬
¹ÊµãQµÄ¹ì¼£·½³ÌÊÇy=-1¡­£¨4·Ö£©
£¨¢ò£©Ö¤Ã÷£º¢Ùµ±Á½ÇÐÏßµÄÖ®Ò»µÄбÂʲ»´æÔÚʱ£¬¸ù¾Ý¶Ô³ÆÐÔ£¬ÉèµãPÔÚµÚÒ»ÏóÏÞ£¬
Ôò´ËʱPµãºá×ø±êΪ$\sqrt{2}$£¬´úÈëÔ²µÄ·½³ÌµÃPµãµÄ×Ý×ø±êΪ$\sqrt{3}$£¬
´ËʱÁ½ÌõÇÐÏß·½³Ì·Ö±ðΪ$x=\sqrt{2}£¬y=\sqrt{3}$£¬´Ëʱ$¡ÏAPB=\frac{¦Ð}{2}$£¬
Èô¡ÏAPBµÄ´óСΪ¶¨Öµ£¬ÔòÕâ¸ö¶¨ÖµÖ»ÄÜÊÇ$\frac{¦Ð}{2}$¡­£¨5·Ö£©
¢Úµ±Á½ÌõÇÐÏßµÄбÂʶ¼´æÔÚʱ£¬¼´$x¡Ù¡À\sqrt{2}$ʱ£¬ÉèP£¨x0£¬y0£©£¬ÇÐÏßµÄбÂÊΪk£¬
ÔòÇÐÏß·½³ÌΪy-y0=k£¨x-x0£©£¬
ÓëÍÖÔ²·½³ÌÁªÁ¢ÏûÔªµÃ$£¨3+2{k^2}£©{x^2}+4k£¨{y_0}-k{x_0}£©x+2{£¨k{x_0}-{y_0}£©^2}-6=0$¡­£¨6·Ö£©
ÓÉÓÚÖ±Ïßy-y0=k£¨x-x0£©ÊÇÍÖÔ²µÄÇÐÏߣ¬
¹Ê$¡÷={[4k£¨{y_0}-k{x_0}£©]^2}-4£¨3+2{k^2}£©[2{£¨k{x_0}-{y_0}£©^2}-6]=0$£¬
ÕûÀíµÃ$£¨2-x_0^2£©{k^2}+2{x_0}{y_0}k-£¨y_0^2-3£©=0$¡­£¨8·Ö£©
ÇÐÏßPA£¬PBµÄбÂÊk1£¬k2ÊÇÉÏÊö·½³ÌµÄÁ½¸öʵ¸ù£¬¹Ê${k_1}{k_2}=-\frac{y_0^2-3}{2-x_0^2}$£¬¡­£¨10·Ö£©
µãPÔÚÔ²x2+y2=5ÉÏ£¬¹Ê$y_0^2-3=2-x_0^2$£¬ËùÒÔk1k2=-1£¬ËùÒÔ$¡ÏAPB=\frac{¦Ð}{2}$£®
×ÛÉÏ¿ÉÖª£º¡ÏAPBµÄ´óСΪ¶¨Öµ$\frac{¦Ð}{2}$£¬µÃÖ¤¡­£¨12·Ö£©

µãÆÀ ±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄ×ÛºÏÓ¦Óã¬ÍÖÔ²ÒÔ¼°Å×ÎïÏߵķ½³ÌµÄÇ󷨣¬¿¼²éת»¯ÊÇÒÔ¼°¼ÆËãÄÜÁ¦£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ö´ÐÐÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÔòÊä³öµÄiµÄÖµÊÇ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÈôÂú×ãÌõ¼þ$\left\{\begin{array}{l}x-y+2¡Ý0\\ x+y-2¡Ý0\\ kx-y-2k+1¡Ý0\end{array}\right.$µÄµãP£¨x£¬y£©¹¹³ÉÈý½ÇÐÎÇøÓò£¬ÔòʵÊýkµÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬-1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖª¼¯ºÏA={x|$\frac{2x-2}{x-2}$£¼1}£¬¼¯ºÏB={x|x2+4x-5£¾0}£¬¼¯ºÏC={x||x-m|£¼1£¬m¡ÊR}£¬Çó£º
£¨1£©A¡ÉB£®
£¨2£©Èô£¨A¡ÉB£©⊆C£¬ÇómµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

16£®ÔÚÔ¼ÊøÌõ¼þ$\left\{\begin{array}{l}{x+3y¡Ý12}\\{x+y¡Ü10}\\{3x+y¡Ý12}\end{array}\right.$Ï£¬Ôòz=2x-yµÄ×î´óֵΪ17£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Éèf£¨x£©=$\frac{1}{1+x}$£¬ÊýÁÐ{an}Âú×㣺a1=$\frac{1}{2}$£¬an+1=f£¨an£©£¬n¡ÊN*£®
£¨1£©Èô¦Ë1£¬¦Ë2Ϊ·½³Ìf£¨x£©=xµÄÁ½¸ö²»ÏàµÈµÄʵ¸ù£¬Ö¤Ã÷£ºÊýÁÐ{$\frac{{a}_{n}-{¦Ë}_{1}}{{a}_{n}-{¦Ë}_{2}}$}ΪµÈ±ÈÊýÁУ»
£¨2£©Ö¤Ã÷£º´æÔÚʵÊým£¬Ê¹µÃ¶Ô?n¡ÊN*£¬a2n-1£¼a2n+1£¼m£¼a2n+2£¼a2n£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®ÒÑÖªa£¾b£¾c£¬Ôò$\frac{1}{a-b}$+$\frac{1}{b-c}$+$\frac{4}{c-a}$µÄÖµÊÇ£¨¡¡¡¡£©
A£®·Ç¸ºÊýB£®·ÇÕýÊýC£®ÕýÊýD£®²»È·¶¨

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

10£®¶þÏîʽ£¨x2-$\frac{2}{x}$£©5µÄÕ¹¿ªÊ½Öк¬xµÄÒ»´ÎÏîµÄϵÊýΪ-80£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®¸ø¶¨¿Éµ¼º¯Êýy=f£¨x£©£¬Èç¹û´æÔÚx0¡Ê[a£¬b]£¬Ê¹µÃf£¨x0£©=$\frac{{¡Ò}_{a}^{b}f£¨x£©dx}{b-a}$³ÉÁ¢£¬Ôò³Æx0Ϊº¯Êýf£¨x£©ÔÚÇø¼ä[a£¬b]Éϵġ°Æ½¾ùÖµµã¡±£®
£¨1£©º¯Êýf£¨x£©=x3-3xÔÚÇø¼ä[-2£¬2]ÉÏµÄÆ½¾ùÖµµãΪ$¡À\sqrt{3}$£¬0£»
£¨2£©Èç¹ûº¯Êýg£¨x£©=$\sqrt{1-{x}^{2}}$+mxÔÚÇø¼ä[-1£¬1]ÉÏÓÐÁ½¸ö¡°Æ½¾ùÖµµã¡±£¬ÔòʵÊýmµÄȡֵ·¶Î§ÊÇ[$-\frac{¦Ð}{4}£¬\frac{¦Ð}{4}$]£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸