精英家教网 > 高中数学 > 题目详情
8.当0<x<a时,不等式$\frac{1}{{x}^{2}}$+$\frac{1}{(a-x)^{2}}$≥2恒成立,则实数a的最大值为2.

分析 想法求出左边式子的最小值,首先把分式形式乘以a2,变形为2+[$\frac{2(a-x)}{x}$+$\frac{2x}{a-x}$]+[$\frac{(a-x)^{2}}{{x}^{2}}$+$\frac{{x}^{2}}{(a-x)^{2}}$],利用均值不等式得出式子的最小值.

解答 解:∵($\frac{1}{{x}^{2}}$+$\frac{1}{(a-x)^{2}}$)a2
=($\frac{1}{{x}^{2}}$+$\frac{1}{(a-x)^{2}}$)[x+(a-x)]2
=($\frac{1}{{x}^{2}}$+$\frac{1}{(a-x)^{2}}$)[x2+2x(a-x)+(a-x)2]
=2+[$\frac{2(a-x)}{x}$+$\frac{2x}{a-x}$]+[$\frac{(a-x)^{2}}{{x}^{2}}$+$\frac{{x}^{2}}{(a-x)^{2}}$]
≥2+4+2=8
∴$\frac{1}{{x}^{2}}$+$\frac{1}{(a-x)^{2}}$≥$\frac{8}{{a}^{2}}$
∴$\frac{8}{{a}^{2}}$≥2'
∴0<a≤2.

点评 考查了对式子的配凑变形,均值定理的应用,思路不太好想,有一定难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知函数y=f(x+1)的值域为[-2,3],则y=f(2x-1)的值域为[-2,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知集合A={x|1<x<4}.
(1)若B={x|y=lg(x2+x)},求解∁BA;
(2)若C={x|x2-ax+a-1<0},且A∪C=A,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知△AB的三个内角A,B,C所对的边分别为a,b,c,若内角A,B,C依次成等差数列,且a,c是方程-x2+6x-8=0的两个根,则b=2$\sqrt{3}$.,△ABC的面积=2$\sqrt{3}$..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=$\frac{1}{2}a{x^2}$-(a+1)x+lnx.
(I)当a=2时,求曲线y=f(x)在点(1,f(1))处切线的斜率;
(II)当a=3时,求函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.设f(x-1)=3x-1,则f(3x)=9x+2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.在△ABC中,A,B,C成等差数列,且b2=ac,则△ABC的形状是(  )
A.直角三角形B.等腰直角三角形C.等腰三角形D.等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.蚌埠地区有三大的旅游景点---荆涂山、龙子湖、锥子山.一位客人游览这三个景点的概率分别为0.6,0.5,0.4,且客人是否游览哪个景点互不影响,设ξ表示客人离开蚌埠时游览的景点数与没有游览的景点数之差的绝对值.
(1)求ξ的分布列及数学期望;
(2)记“函数f(x)=x2-3ξ•x+1在区间(-∞,2]上单调递减”为事件A,求事件A的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:?x∈R,mx2+1≤1,q:?x∈R,x2+mx+1≥0,若 p∨(¬q)为假命题,则实数m的取值范围是(  )
A.[0,2]B.(-∞,0)∪(2,+∞)C.RD.

查看答案和解析>>

同步练习册答案