精英家教网 > 高中数学 > 题目详情
20.在△ABC中,A,B,C成等差数列,且b2=ac,则△ABC的形状是(  )
A.直角三角形B.等腰直角三角形C.等腰三角形D.等边三角形

分析 先根据A,B,C成等差数列和三角形内角和,求B的值,进而根据b2=ac代入余弦定理求得a2+c2-ac=ac,整理求得a=c,判断出A=C,最后判断三角形的形状.

解答 解:由A,B,C成等差数列,有2B=A+C,因为A,B,C为△ABC的内角,所以A+B+C=π,可得B=$\frac{π}{3}$.
由a,b,c成等比数列,有b2=ac,
根据b2=ac代入余弦定理求得a2+c2-ac=ac,即(a-c)2=0,因此a=c,从而A=C,
所以△ABC为等边三角形.
故选:D.

点评 本题主要考查了等差数列和等比数列的性质,三角形形状的判断,余弦定理的应用.三角形问题与数列,函数,不等式的综合题,是考试中常涉及的问题,注重了对学生的双基能力的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.幂函数f(x)=x${\;}^{{m}^{2}+2m}$在(0,+∞)上递减.则整数m=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知公比不为1的等比数列{an}中,a1=1,a2=a,且an+1=k(an+an+2)且对任意正整数都成立,若对任意相邻三项am,am+1,am+2按某顺序排列后成等差数列,则k=$\frac{2}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.当0<x<a时,不等式$\frac{1}{{x}^{2}}$+$\frac{1}{(a-x)^{2}}$≥2恒成立,则实数a的最大值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知{an}是递增的等差数列,其中a2,a3是方程x2-5x+6=0的根,Sn是数列{an}的前n项和.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=$\frac{1}{{S}_{n}}$求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知函数f(x)=ax+1,且f(2)=-1,则f(-2)的值为(  )
A.1B.2C.3D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.口袋中装有大小质地都相同,编号为1,2,3,4,5的求各一个,现从中一次性随机地取出两个球,设取出的两球中较大的编号为X,则随机变量X的数学期望是(  )
A.3B.4C.4.5D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知f(x)是定义在R上的函数,且f(x)=f(x+2)恒成立,当x∈(-2,0)时,f(x)=x2,则f(2015)的值为(  )
A.5B.13C.49D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若不等式2ax2-ax+1>0的解集为R,则实数a的取值范围为(  )
A.[0,8)B.(0,4)C.(0,8)D.[0,4)

查看答案和解析>>

同步练习册答案