精英家教网 > 高中数学 > 题目详情
2.半径为R的球放在房屋的墙角处,球与围成墙角的三个互相垂直的面都相切,若球心到墙角的距离是$\sqrt{3}$,则球的表面积是4π.

分析 设球的半径为R,当球放在墙角时,同时与两墙面和地面相切可知球心与墙角顶点可构成边长为R的正方体,则正方体对角线即为球心到墙角顶点的距离,由此求出球的半径,可得球的表面积.

解答 解:根据题意可知球心与墙角顶点可构成边长为R的正方体
则球心到墙角顶点的距离为正方体的对角线即$\sqrt{3}$R
即$\sqrt{3}$R=$\sqrt{3}$
解得:R=1
故球的表面积是S=4π•12=4π,
故答案为:4π.

点评 本题主要考查了空间两点的距离,以及利用构造正方体进行解题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=Asin(2x+ϕ)(A>0,0<ϕ<\frac{π}{2})$,当$x=\frac{π}{12}$时,f(x)有最大值2.
(1)求f(x)的最小正周期及解析式;
(2)若$f(α+\frac{π}{3})=-\frac{1}{2},α∈[0,\frac{π}{4}]$,求$f(α+\frac{π}{6})$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,内角A,B,C的对边分别是a,b,c,且$a=bcosC+\frac{{\sqrt{3}}}{3}csinB$.
(1)求角B的值;
(2)若a+c=6,且△ABC的面积为$\frac{{3\sqrt{3}}}{2}$,求边b的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.命题“?x∈R,使得x2+x+1>0”的否定是(  )
A.?x0∈R,使得x02+x0+1>0B.?x∈R,使得x2+x+1>0
C.?x∈R,使得x2+x+1≤0D.?x0∈R,使得x02+x0+1≤0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.甘班全体同学某次考试数学成绩(满分:100分)的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100),则图中x的值等于(  )
A.0.012B.0.018C.0.12D.0.18

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|2x-1|+|2x-3|,x∈R.
(1)解不等式f(x)≤6;
(2)若不等式6m2-4m<f(x)对任意x∈R都成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果方程$\frac{x^2}{m^2}+\frac{y^2}{m+2}=1$表示焦点在x轴上的椭圆,则实数m的取值范围是(  )
A.(2,+∞)B.(-∞,-1)C.(-∞,-1)∪(2,∞)D.(-2,-1)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow a$,$\overrightarrow b$满足$\overrightarrow a$($\overrightarrow a$+$\overrightarrow b$)=5,且|$\overrightarrow a$|=2,|$\overrightarrow b$|=1,则向量$\overrightarrow a$与$\overrightarrow b$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知P为抛物线y2=8x上一点,F为该抛物线焦点,若A点坐标为(3,2),则|PA|+|PF|最小值为(  )
A.$\sqrt{5}$B.5C.7D.11

查看答案和解析>>

同步练习册答案