【题目】若圆x2+y2-4x-4y-10=0上至少有三个不同点到直线l:ax+by=0的距离为2
,求直线l斜率的取值范围.
【答案】![]()
【解析】
求出圆心与半径,则圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2
等价为圆心到直线l:ax+by=0的距离d≤
,从而求直线l的斜率的取值范围.
圆x2+y2﹣4x﹣4y﹣10=0可化为(x﹣2)2+(y﹣2)2=18,
则圆心为(2,2),半径为3
;
则由圆x2+y2﹣4x﹣4y﹣10=0上至少有三个不同点到直线l:ax+by=0的距离为2
,
则圆心到直线l:ax+by=0的距离d≤3
﹣2
=
;
即
,
则a2+b2+4ab≤0,
若b=0,则a=0,故不成立,
故b≠0,则上式可化为
1+(
)2+4×
≤0,
由直线l的斜率k=﹣
,
则上式可化为k2﹣4k+1≤0,
解得2﹣
≤k≤2+
,
故答案为:[2﹣
,2+
]
科目:高中数学 来源: 题型:
【题目】大西洋鲑鱼每年都要逆流而上,游回产地产卵,经研究发现鲑鱼的游速可以表示为函数y=
log3(
),单位是m/s,θ是表示鱼的耗氧量的单位数.
(1)当一条鲑鱼的耗氧量是900个单位时,它的游速是多少?
(2)计算一条鱼静止时耗氧量的单位数。
(3)某条鲑鱼想把游速提高1 m/s,那么它的耗氧量的单位数是原来的多少倍?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在半径为
,圆心角为
的扇形金属材料中剪出一个长方形
,并且
与
的平分线
平行,设
.
![]()
(1)试将长方形
的面积
表示为
的函数;
(2)若将长方形
弯曲,使
和
重合焊接制成圆柱的侧面,当圆柱侧面积最大时,求圆柱的体积(假设圆柱有上下底面);为了节省材料,想从△
中直接剪出一个圆面作为圆柱的一个底面,请问是否可行?并说明理由.
(参考公式:圆柱体积公式
.其中
是圆柱底面面积,
是圆柱的高;等边三角形内切圆半径
.其中
是边长)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在每年的春节后,某市政府都会发动公务员参与到植树绿化活动中去.林业管理部门在植树前,为了保证树苗的质量,都会在植树前对树苗进行检测.现从甲、乙两种树苗中各抽测了10株树苗,量出它们的高度如下(单位:厘米):
甲:37,21,31,20,29,19,32,23,25,33;
乙:10,30,47,27,46,14,26,10,44,46.
(1)画出两组数据的茎叶图,并根据茎叶图对甲、乙两种树苗的高度作比较,写出两个统计结论;
(2)设抽测的10株甲种树苗高度平均值为
,将这10株树苗的高度依次输入,按程序框(如图)进行运算,问输出的S大小为多少?并说明S的统计学意义.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】班上有四位同学申请A,B,C三所大学的自主招生,若每位同学只能申请其中一所大学,且申请其中任何一所大学是等可能的.
(1)求恰有2人申请A大学或B大学的概率;
(2)求申请C大学的人数X的分布列与数学期望E(X).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCD中,底面ABCD为直角梯形,AD∥BC,∠ADC=90°,平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=
AD=1,CD=
. ![]()
(1)求证:平面PQB⊥平面PAD;
(2)若M为棱PC的中点,求异面直线AP与BM所成角的余弦值;
(3)若二面角M﹣BQ﹣C大小为30°,求QM的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com