精英家教网 > 高中数学 > 题目详情
8.已知f(x)=sin4ωx-cos4ωx(ω>0)的值域为A,若对任意a∈R,存在x1,x2∈R且x1<x2,使得{y|y=f(x),a≤x≤a+2}=[f(x1),f(x2)]=A,设x2-x1的最小值为g(ω),则g(ω)的值域为(0,1].

分析 利用三角恒等变换化简f(x)的解析式,结合题意可得函数f(x)的周期小于或等于2,即$\frac{2π}{2ω}$≤2,求得ω≥$\frac{π}{2}$,根据x2-x1的最小值为半个周期,可得g(ω)=$\frac{T}{2}$=$\frac{π}{2ω}$≤$\frac{π}{π}$=1,由此可得g(ω)的值域.

解答 解:已知f(x)=sin4ωx-cos4ωx=(sin2ωx+cos2ωx )•(sin2ωx-cos2ωx )
=-cos2ωx(ω>0)的值域为A=[-1,1],
若对任意a∈R,存在x1,x2∈R且x1<x2
使得{y|y=f(x),a≤x≤a+2}=[f(x1),f(x2)]=A,则f(x1)=-1,f(x2)=1,
故函数f(x)的周期小于或等于2,即$\frac{2π}{2ω}$≤2,故有ω≥$\frac{π}{2}$,
根据x2-x1的最小值为半个周期,可得g(ω)=$\frac{T}{2}$=$\frac{π}{2ω}$≤$\frac{π}{π}$=1,
则g(ω)的值域为(0,1],
故答案为:(0,1].

点评 本题主要考查三角恒等变换,余弦函数的值域,余弦函数的周期性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=|sinx|+cosx,现有如下几个命题:
①该函数为偶函数;
②该函数最小正周期为$\frac{π}{2}$;
③该函数值域为$[-1,\sqrt{2}]$;
④若定义区间(a,b)的长度为b-a,则该函数单调递增区间长度的最大值为$\frac{3π}{4}$.
其中正确命题为①③④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知△ABC中,BC=1,A=120°,∠B=θ,记f(θ)=$\overrightarrow{BC}•\overrightarrow{AC}$,
①求f(θ)关于θ的表达式.
②求f(θ)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某几何体的三视图如图所示,则该几何体的体积是(  )
A.$\frac{2π}{3}$B.πC.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知梯形ABCD中,∠ABC=∠BAD=$\frac{π}{2}$,AB=BC=1,AD=2,P是DC的中点,则|$\overrightarrow{PA}$+2$\overrightarrow{PB}$|=(  )
A.$\frac{\sqrt{82}}{2}$B.2$\sqrt{5}$C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$表示的平面区域为D,若存在x∈D,使得y=x+$\frac{mx}{|x|}$,则实数m的取值范围是[-2,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.当实数x,y满足不等式组$\left\{\begin{array}{l}x≥0\\ y≥0\\ 2x+y≤2\end{array}\right.$时,目标函数z=ax+y的最大值为3,则实数a的值为(  )
A.$\frac{1}{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.命题“?x>2,都有x2>2”的否定是?x0>2,x02≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知四棱锥S-ABCD的底面为平行四边形SD⊥面ABCD,SD=1,AB=2,AD=1,∠DAB=60°,M、N分别为SB、SC中点,过MN作平面MNPQ分别与线段CD、AB相交于点P、Q.
(1)在图中作出平面MNPQ,使面MNPQ∥面SAD,并指出P、Q的位置
(不要求证明);
(2)若$\overrightarrow{AQ}=\frac{1}{3}\overrightarrow{AB}$,求二面角M-PQ-B的平面角大小?

查看答案和解析>>

同步练习册答案