精英家教网 > 高中数学 > 题目详情
某校高一(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的污损,可见部分如图.

(Ⅰ)求分数在[50,60)的频率及全班人数;
(Ⅱ)求分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间矩形的高;
(Ⅲ)若要从分数在[80,100)之间的试卷中任取两份分析学生失分情况,求在抽取的试卷中,至少有一份分数在[90,100)之间的概率.
考点:古典概型及其概率计算公式,频率分布直方图,茎叶图
专题:概率与统计
分析:(Ⅰ)先由频率分布直方图求出[50,60)的频率,结合茎叶图中得分在[50,60)的人数即可求得本次考试的总人数;
(Ⅱ)根据茎叶图的数据,利用(Ⅰ)中的总人数减去[50,80)外的人数,即可得到[50,80)内的人数,从而可计算频率分布直方图中[80,90)间矩形的高;
(Ⅲ)用列举法列举出所有的基本事件,找出符合题意得基本事件个数,利用古典概型概率计算公式即可求出结果.
解答: 解:(Ⅰ)分数在[50,60)的频率为0.008×10=0.08,
由茎叶图知:
分数在[50,60)之间的频数为2,
∴全班人数为
2
0.08
=25

(Ⅱ)分数在[80,90)之间的频数为25-22=3;
频率分布直方图中[80,90)间的矩形的高为
3
25
÷10=0.012

(Ⅲ)将[80,90)之间的3个分数编号为a1,a2,a3,[90,100)之间的2个分数编号为b1,b2
在[80,100)之间的试卷中任取两份的基本事件为:
(a1,a2),(a1,a3),(a1,b1),(a1,b2),(a2,a3),(a2,b1),(a2,b2),(a3,b1),(a3,b2),(b1,b2)共10个,
其中,至少有一个在[90,100)之间的基本事件有7个,
故至少有一份分数在[90,100)之间的概率是
7
10
=0.7
点评:本题考查了茎叶图和频率分布直方图的性质,以及古典概型概率计算公式的应用,此题是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

抛物线x2=my上一点M(x0,-3)到焦点的距离为5,则实数m的值为(  )
A、-8B、-4C、8D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

南昌某中学为了重视国学的基础教育,开设了A,B,C,D,E共5门选修课,每个学生必须且只能选修1门课程课,现有该校的甲、乙、丙、丁4名学生:
(1)求恰有2门选修课没有被这4名学生选择的概率;
(2)分别求出这4名学生选择A选修课的人数为1和3的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
16x+7
4x+4
,数列{an},{bn}满足a1>0,b1>0,an=f(an-1),bn=f(bn-1),n=2,3…
(Ⅰ)若a1=3,求a2,a3
(Ⅱ)求a1的取值范围,使得对任意的正整数n,都有an+1>an
(Ⅲ)若a1=3,b1=4,求证:0<bn-an
1
8n-1
,n=1,2,3…

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=
1
2
PD

(1)证明:平面PQC⊥平面DCQ;
(2)求二面角Q-BP-C的余弦值.
(3)求点P到平面BQD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正数数列{an}中,a1=1,前n项和为Sn,对任意n∈N*,lgSn、lgn、lg
1
an
成等差数列.
(1)求an和Sn
(2)设bn=
Sn
n !
,数列{bn}的前n项和为Tn,当n≥2时,证明:Sn<Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,定义d(P,Q)=|x1-x2|+|y1-y2|为两点P(x1,y1),Q(x2,y2)之间的“折线距离”,在这个定义下给出下列命题:
①到原点的“折线距离”等于2的点的轨迹是一个正方形;
②到原点的“折线距离”等于1的点的轨迹是一个圆;
③到M(-1,0),N(1,0)两点的“折线距离”之和为4的轨迹是面积为6的六边形;
④到M(-1,0),N(1,0)两点的“折线距离”差的绝对值为3的点的轨迹是两条平行直线.
其中正确的命题是
 
.(写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的k值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)(3x+5y-4z)7展开式的项数为(  )
A、21B、28C、36D、45

查看答案和解析>>

同步练习册答案