精英家教网 > 高中数学 > 题目详情
14.已知向量$\overrightarrow{a}$=(2,3),向量$\overrightarrow{b}$=(-4,7),则$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为(  )
A.$\sqrt{13}$B.$\frac{{\sqrt{13}}}{5}$C.$\sqrt{65}$D.$\frac{{\sqrt{65}}}{5}$

分析 根据平面向量投影的定义,求出向量$\overrightarrow{a}$在$\overrightarrow{b}$上的投影即可.

解答 解:∵向量$\overrightarrow{a}$=(2,3),$\overrightarrow{b}$=(-4,7),
∴$\overrightarrow{a}$在$\overrightarrow{b}$上的投影为|$\overrightarrow{a}$|cos<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{\overrightarrow{a}•\overrightarrow{b}}{|\overrightarrow{b}|}$=$\frac{2×(-4)+3×7}{\sqrt{{(-4)}^{2}{+7}^{2}}}$=$\frac{\sqrt{65}}{5}$.
故选:D.

点评 本题考查了平面向量的投影计算问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知:$\overrightarrow{a}$、$\overrightarrow{b}$、$\overrightarrow{c}$是同一平面内的三个向量,其中向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-3,2)
(1)若k$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-4$\overrightarrow{b}$平行,求实数k的值;
(2)若k$\overrightarrow{a}$+2$\overrightarrow{b}$与2$\overrightarrow{a}$-4$\overrightarrow{b}$垂直,求实数k的值.
(3)若|$\overrightarrow{c}$|=2$\sqrt{5}$,且$\overrightarrow{c}$∥$\overrightarrow{a}$,求$\overrightarrow{c}$的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知Sn=2n2+4n,设{$\frac{1}{{S}_{n}}$}的前n项和为Tn,证明:$\frac{1}{6}$≤Tn≤$\frac{3}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知数列{an}的前n项和Sn:a1=3且Sn=-$\frac{3}{2}$+$\frac{1}{2}$an+1(n∈N*).
(1)求an
(2)bn=$\frac{{a}_{n}}{(2{a}_{n}+1)(2{a}_{n+1}+1)}$,数列{bn}的前n项和为Tn,求证:Tn<$\frac{1}{28}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=sin$\frac{2x}{3}$+cos($\frac{2x}{3}$-$\frac{π}{6}$)图象的相邻两条对称轴之间的距离等于$\frac{3π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.数列{an}的通项公式是an=21+4n-n2,这个数列从第8项起各项都为负数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow a,\overrightarrow b$满足:$|{\overrightarrow a}|=1,|{\overrightarrow b}|=2$,$\overrightarrow a$与$\overrightarrow b$的夹角为$\frac{π}{3}$,则$|{2\overrightarrow a-\overrightarrow b}|$=(  )
A.2B.4C.2$\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设命题p:函数f(x)=x2-2ax-1在区间(-∞,3)上单调递减;命题q:x2+ax+1>0对x∈R恒成立.如果命题p或q为真命题,p且q为假命题,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.O为?ABCD所在平面上一点,若$\frac{|\overrightarrow{AB|}}{|\overrightarrow{AD|}}$=$\frac{2}{3}$,$\overrightarrow{OA}$+$\overrightarrow{OB}$=λ($\overrightarrow{OC}$+$\overrightarrow{OD}$),$\overrightarrow{OA}$=μ($\overrightarrow{AB}$+2$\overrightarrow{AC}$),则λ的值是(  )
A.-$\frac{1}{3}$B.-$\frac{1}{2}$C.-$\frac{2}{3}$D.-1

查看答案和解析>>

同步练习册答案