精英家教网 > 高中数学 > 题目详情
已知向量
a
=(-1,cosωx+
3
sinωx),
b
=(f(x),cosωx),其中ω>0,且
a
b
,又f(x)的图象两相邻对称轴的距离为
3
2
π

(1)求ω的值;
(2)求函数f(x)在[0,2π]上的单调递减区间.
考点:三角函数中的恒等变换应用,平面向量数量积的坐标表示、模、夹角,复合三角函数的单调性
专题:三角函数的图像与性质
分析:(1)由向量垂直可得数量积为0,代入可得函数解析式,由题意可得周期,进而可得ω的值;
(2)先由2kπ+
π
2
2x
3
+
π
6
≤2kπ+
2
   ,k∈Z
解得总的单调区间,结合x∈[0,2π],可得答案.
解答: 解:(1)由题意
a
b
=0,
∴f(x)=cosωx(cosωx+
3
sinωx)
=
1+cosωx
2
+
3
sin2ωx
2

=
1
2
+sin(2ωx+
π
6
)

由题意,函数周期为3π,又ω>0,∴ω=
1
3

(2)由(1)知f(x)=
1
2
+sin(
2
3
x+
π
6
)

2kπ+
π
2
2x
3
+
π
6
≤2kπ+
2
   ,k∈Z

可得3kπ+
π
2
≤x≤3kπ+2π   ,k∈Z

又x∈[0,2π],
∴f(x)的减区间是[
π
2
,2π].
点评:本题考查复合三角函数的单调性,涉及向量的数量积的运算,属中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知圆C的方程为x2+y2-4x=0,直线l与x,y轴的交点坐标分别为(
1
3
,0)和(0,-
1
4
),则直线l截圆C所得的弦长为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等x|x|<x的解集是(  )
A、{x|0<x<1}
B、{x|-1<x<1}
C、{x|0<x<1}或{x|x<-1},
D、{x|-1<x<0,x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,如果0<tanAtanB<1,那么△ABC是
 
三角形.(填“钝角”、“锐角”、“直角”)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知Sn是数列{an}的前n项和,Sn=pn,那么数列{an}是(  )
A、等比数列
B、当p≠0时为等比数列
C、当p≠0,p≠1时为等比数列
D、不可能为等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C为圆O上三点,线段CO的延长线与线段AB有交点,若
OC
=m
OA
+n
OB
,则m+n的范围是(  )
A、(0,1)
B、(1,+∞)
C、(-1,0)
D、(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

设正项数列{an}的前n项和是Sn,若{an}和{
Sn
}都是等差数列,且公差相等,则a1=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式x>
1
x
的解集是(  )
A、{x|x<1}
B、{x|x<-1或x>1}
C、{x|-1<x<1}
D、{x|-1<x<0或x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:

已知角A,B,C是△ABC三内角,关于x的方程x2-xcosAcosB-cos2
C
2
=0
有一个根为1,则△ABC的形状是
 
三角形.

查看答案和解析>>

同步练习册答案