精英家教网 > 高中数学 > 题目详情
14.已知函数f(x)=e${\;}^{\frac{x}{a}}$(x2-3ax+a2))(a>0)
(1)求函数f(x)单调区间;
(2)函数f(x)在(-∞,+∞)上是否存在最小值,若存在,求出该最小值;若不存在,请说明理由.

分析 (1)求导数,利用导数的正负,求函数f(x)单调区间;
(2)由(1)可知,函数在x=2a处取得极小值,函数无最小值.

解答 解:(1)∵f(x)=e${\;}^{\frac{x}{a}}$(x2-3ax+a2),
∴f′(x)=$\frac{1}{a}$•e${\;}^{\frac{x}{a}}$(x+a)(x-2a)
∵a>0,
∴令f′(x)>0,可得x<-a或x>2a;f′(x)<0,可得-a<x<2a,
∴函数的单调递增区间是(-∞,-a),(2a,+∞);单调减区间是(-a,2a);
(2)由(1)可知,函数在x=2a处取得极小值,函数无最小值.

点评 本题考查了函数的单调性,考查了导数的应用以及分析问题能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知双曲线$\frac{{x}^{2}}{cosα}$+$\frac{{y}^{2}}{sinα}$=1的离心率为$\sqrt{3}$,则sin2α=(  )
A.-1B.$\frac{\sqrt{3}}{2}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求抛物线y=x2与直线x+y=2所围图形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列四个命题,其中不正确的命题为(  )
①若cos α=cos β,则α-β=2kπ,k∈Z;
②函数y=2cos$\frac{x}{3}$的图象关于x=$\frac{π}{12}$对称;
③函数y=cos(sin x)(x∈R)为偶函数;
④函数y=sin|x|是周期函数,且周期为2π.
A.①②B.①④C.①②③D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=sinxcosx-sin2($\frac{π}{4}$-x).
(1)求函数f(x)的对称轴方程;
(2)求函数y=f(x-$\frac{π}{8}$)在x∈[0,$\frac{π}{2}$]上的最大值与最小值以及取得最值时相应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.非空数集A如果满足:①0∉A;②若对?x∈A,有$\frac{1}{x}$∈A,则称A是“互倒集”.给出以下数集:
①{x∈R|x2+ax+1=0}; ②{x|x2-4x+1<0};③{y|y=$\left\{\begin{array}{l}{2x+\frac{2}{5},x∈[0,1)}\\{x+\frac{1}{x},x∈[1,2]}\end{array}\right.$}.
其中“互倒集”的个数是(  )
A.3B.2C.1D.0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某数学兴趣小组举行了一次趣味口答竞赛,共有5名同学参加.竞赛分两个环节:抢答环节和抽答环节,其中抢答环节共有4道题,抽答环节仅有1道题.
(1)假设抢答环节每人抢答成功的概率均相等,则甲同学成功抢答2次的概率是$\frac{96}{625}$;
(2)已知抢答环节有3名同学成功抢答,抽答环节从装有5名同学名签的纸盒中随机抽取:第一次采取有放回地抽取,若第一次抽到的是抢答成功的同学,则从第二次开始采取无放回地抽取,整个抽答环节抽到未抢答成功的同学即停止.那么抽取的次数X的数学期望E(X)=2.2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)经过点(1,$\frac{{\sqrt{6}}}{3}$),离心率为$\frac{{\sqrt{6}}}{3}$.
(1)求椭圆C的方程;
(2)若动直线l(不经过椭圆上顶点A)与椭圆C相交于P,Q两点,且$\overrightarrow{AP}$•$\overrightarrow{AQ}$=0,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个几何体的三视图如图所示,则该几何体的体积为(  )
A.4B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

同步练习册答案