| A. | -1 | B. | $\frac{\sqrt{3}}{2}$ | C. | -$\frac{4}{5}$ | D. | $\frac{4}{5}$ |
分析 根据双曲线$\frac{{x}^{2}}{cosα}$+$\frac{{y}^{2}}{sinα}$=1的离心率为$\sqrt{3}$,求出tanα=-$\frac{1}{2}$,利用sin2α=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+ta{n}^{2}α}$,即可得出结论.
解答 解:因为双曲线$\frac{{x}^{2}}{cosα}$+$\frac{{y}^{2}}{sinα}$=1的离心率为$\sqrt{3}$,
所以$\frac{sinα-cosα}{sinα}$=3,
所以tanα=-$\frac{1}{2}$,
所以sin2α=$\frac{2sinαcosα}{si{n}^{2}α+co{s}^{2}α}$=$\frac{2tanα}{1+ta{n}^{2}α}$=-$\frac{4}{5}$.
故选:C.
点评 本题考查双曲线离心率的计算问题.在求双曲线的离心率时,其关键是求出c,a之间的关系,即可求出双曲线的离心率,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{acosαcosβ}{cos(β-α)}$ | B. | $\frac{acosαcosβ}{sin(β-α)}$ | C. | $\frac{asinαsinβ}{cos(β-α)}$ | D. | $\frac{asinαsinβ}{sin(β-α)}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}+3$ | B. | $2\sqrt{3}+2$ | C. | $3\sqrt{2}+2$ | D. | $3\sqrt{3}+3$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{5}$]∪[7,+∞) | B. | [$\frac{1}{5}$,7] | C. | (-∞,$\frac{1}{7}$]∪[5,+∞) | D. | [$\frac{1}{7}$,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$+2$\sqrt{3}$ | B. | $\frac{π}{3}$+$\sqrt{3}$ | C. | π+2$\sqrt{3}$ | D. | $\frac{2π}{3}$+$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com