精英家教网 > 高中数学 > 题目详情
5.求抛物线y=x2与直线x+y=2所围图形的面积.

分析 由$\left\{\begin{array}{l}y={x^2}\\ x+y=2\end{array}\right.$得x2+x-2=0,解得:x=-2,x=1,依题意,二曲线所围成的图形的面积S=${∫}_{-2}^{1}$[(2-x)-x2]dx,利用微积分定理可得答案.

解答 解:联立$\left\{\begin{array}{l}y={x^2}\\ x+y=2\end{array}\right.$得x2+x-2=0,解得:x=-2或x=1,
故积分区间为[-2,1]
直线x+y=2在区间[-2,1]于抛物线所围成的图形的面积
S=${∫}_{-2}^{1}$[(2-x)-x2]dx=(2x-$\frac{1}{2}$x2-$\frac{1}{3}$x3)${|}_{-2}^{1}$=$\frac{9}{2}$.

点评 本题考查定积分在求面积中的应用,得到抛物线y=x2与直线x+y=2所围成的图形的面积S=${∫}_{-2}^{1}$[(2-x)-x2]dx是关键,考查等价转化思想与运算求解能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.某实体公司老板给员工两个加薪的方案:①每年年末加1000元;②每半年结束时加300元.
(Ⅰ)若在该公司干10年,问两种方案在10年内可分别获得加薪工资共多少元?
(Ⅱ)如果由你选择,你会选择其中的哪一种加薪方案比较合算?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知实数x,y 满足$\left\{\begin{array}{l}{x-3y-6≤0}\\{y≤2x+4}\\{2x+3y-12≤0}\end{array}\right.$,直线(1+λ)x+(1-2λ)y+3λ-12=0(λ∈R)过定点A(x0,y0),则z=$\frac{y-{y}_{0}}{x-{x}_{0}}$的取值范围为(  )
A.(-∞,$\frac{1}{5}$]∪[7,+∞)B.[$\frac{1}{5}$,7]C.(-∞,$\frac{1}{7}$]∪[5,+∞)D.[$\frac{1}{7}$,5]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个空间几何体的三视图及尺寸如图所示,则该几何体的体积是(  )
A.$\frac{π}{3}$+2$\sqrt{3}$B.$\frac{π}{3}$+$\sqrt{3}$C.π+2$\sqrt{3}$D.$\frac{2π}{3}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知双曲线$\frac{x^2}{m}$-$\frac{y^2}{3m}$=1的一个焦点是(0,2),椭圆$\frac{x^2}{n}$-$\frac{y^2}{m}$=1的焦距等于4,则n=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列命题:
①函数y=cos($\frac{2}{3}$x+$\frac{π}{2}}$)是奇函数;
②函数y=sin(2x+$\frac{π}{3}}$)的图象关于点($\frac{π}{12}$,0)成中心对称;
③若α,β是第一象限角且α<β,则tanα<tanβ
④x=$\frac{π}{8}$是函数y=sin(2x+$\frac{5π}{4}}$)的一条对称轴;
其中正确命题的序号为①④.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知圆C经过M(3,-3),N(-2,2)两点,且在y轴上截得的线段长为$4\sqrt{3}$.
(Ⅰ)求圆C的方程;
(Ⅱ)若直线l∥MN,且l与圆C交于点A,B,且以线段AB为直径的圆经过坐标原点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=e${\;}^{\frac{x}{a}}$(x2-3ax+a2))(a>0)
(1)求函数f(x)单调区间;
(2)函数f(x)在(-∞,+∞)上是否存在最小值,若存在,求出该最小值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)已知f(x)是一次函数,且满足3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式.
(2)定义在(-1,1)内的函数f(x)满足2f(x)-f(-x)=lg(x+1),求函数f(x)的解析式.
(3)已知f(2x+1)=4x2+8x+3,求f(x)的解析式.

查看答案和解析>>

同步练习册答案