分析 由$\left\{\begin{array}{l}y={x^2}\\ x+y=2\end{array}\right.$得x2+x-2=0,解得:x=-2,x=1,依题意,二曲线所围成的图形的面积S=${∫}_{-2}^{1}$[(2-x)-x2]dx,利用微积分定理可得答案.
解答
解:联立$\left\{\begin{array}{l}y={x^2}\\ x+y=2\end{array}\right.$得x2+x-2=0,解得:x=-2或x=1,
故积分区间为[-2,1]
直线x+y=2在区间[-2,1]于抛物线所围成的图形的面积
S=${∫}_{-2}^{1}$[(2-x)-x2]dx=(2x-$\frac{1}{2}$x2-$\frac{1}{3}$x3)${|}_{-2}^{1}$=$\frac{9}{2}$.
点评 本题考查定积分在求面积中的应用,得到抛物线y=x2与直线x+y=2所围成的图形的面积S=${∫}_{-2}^{1}$[(2-x)-x2]dx是关键,考查等价转化思想与运算求解能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,$\frac{1}{5}$]∪[7,+∞) | B. | [$\frac{1}{5}$,7] | C. | (-∞,$\frac{1}{7}$]∪[5,+∞) | D. | [$\frac{1}{7}$,5] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{3}$+2$\sqrt{3}$ | B. | $\frac{π}{3}$+$\sqrt{3}$ | C. | π+2$\sqrt{3}$ | D. | $\frac{2π}{3}$+$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com