分析 (1)根据f($\frac{π}{2}$)=$\sqrt{3}$列方程解出a即可得出f(x)的最大值,令2x-$\frac{π}{3}$=$\frac{π}{2}$+2kπ得出x的值;
(2)利用周期公式计算周期T,令2x-$\frac{π}{3}$∈[$\frac{π}{2}+2kπ$,$\frac{3π}{2}$+2kπ]解出f(x)的减区间.
解答 解:(1)∵函数$f(x)=asin(2x-\frac{π}{3})$,且$f(\frac{π}{2})=\sqrt{3}$,
∴$f(\frac{π}{2})=asin\frac{2π}{3}=\frac{{\sqrt{3}}}{2}a=\sqrt{3}$,∴a=2,
∴函数 $f(x)=2sin(2x-\frac{π}{3})$,
∴函数$f(x)=2sin(2x-\frac{π}{3})$有最大值2,
此时,$2x-\frac{π}{3}=2kπ+\frac{π}{2}$,即 $x=kπ+\frac{5π}{12},k∈Z$,
(2)函数$f(x)=2sin(2x-\frac{π}{3})$的最小正周期为T=$\frac{2π}{2}$=π,
令$2x-\frac{π}{3}∈[2kπ+\frac{π}{2},2kπ+\frac{3π}{2}](k∈Z)$得,$x∈[kπ+\frac{5π}{12},kπ+\frac{11π}{12}](k∈Z)$,
即y=f(x)的单调减区间为$[kπ+\frac{5π}{12},kπ+\frac{11π}{12}](k∈Z)$.
点评 本题考查了正弦函数的图象与性质,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{π}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,2x0+1>0 | B. | ?x∈R,2x+1>0 | C. | ?x0∈R,2x0+1≤0 | D. | ?x∈R,2x+1≥0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1] | B. | [-1,+∞) | C. | (-∞,1] | D. | [1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 12 | B. | $2\sqrt{6}$ | C. | $2\sqrt{3}$ | D. | $\root{3}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com