精英家教网 > 高中数学 > 题目详情
实数x、y满足不等式组
2x-y+1≥0
x-2y-1≤0
x+y≤1
,则目标函数z=x-y取得最大值时的最优解为
 
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,即可求出最优解.
解答: 解:作出不等式组对应的平面区域如图:
设z=x-y,则y=x-z,
平移直线y=x-z,由图象可知当直线y=x-z经过点A(1,0)时,
直线y=x-z的截距最小,此时z最大,
故取得最大值时的最优解为(1,0),
故答案为:(1,0)
点评:本题主要考查线性规划的应用,利用z的几何意义,结合数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
ex
(x≥2)
f(x+1)(x<2)
,则f(ln3)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若定义一种新运算a?b=
b,a≥b
a,a<b
,求函数f(x)=x?(3-x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(cosx)=cos2007x.求:
(1)f(
1
2
)的值;
(2)f(sinx)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某大型养鸡场在本年度的第x月的盈利y(万元)与x的对应值如表:
 x 1 2 3 4
 y 65 70 80 90
(1)依据这些数据求出x,y之间的回归直线方程
y
=
b
x+
a

(2)依据此回归直线方程预测第五个月大约能盈利多少万元.

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x、y满足(x+y-1)(x-y+1)≥0且x∈[-1,1],则x+y的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知y=f(x)是定义在R上的奇函数,且f(
π
2
+x)=f(
π
2
-x)
,对于函数y=f(x),给出以下几个结论:
①y=f(x)是周期函数; 
②x=π 是y=f(x)图象的一条对称轴;
③(-π,0)是y=f(x)图象的一个对称中心; 
④当x=
π
2
时,y=f(x)一定取得最大值.
其中正确结论的序号是
 
(把你认为正确结论的序号都填上)

查看答案和解析>>

科目:高中数学 来源: 题型:

某高校进行自主招生面试时的程序如下:共设3道题,每道题答对给10分,答错倒扣5分(每道题都必须回答,但相互不影响).设某学生对每道题答对的概率都为
3
4
,则该学生在面试时得分的期望为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1,F2,若P为其上一点,且|PF1|=2|PF2|,∠F1PF2=
π
3
,则双曲线的离心率为(  )
A、
2
B、2
C、
3
D、3

查看答案和解析>>

同步练习册答案