精英家教网 > 高中数学 > 题目详情
如图,已知直三棱柱ABC-A1B1C1(侧棱与底面垂直的三棱柱为直三棱柱)中,CA=CB,D,D1,E分别为边AB,A1B1,BC1的中点.
(1)求证:平面ABC1⊥平面DCC1D1
(2)若D1在平面ABC1的射影F在边AE上,且
AA 1
AB
=
1
2
,求直线AD1与平面ABC1所成角的正弦值.
考点:直线与平面所成的角,平面与平面垂直的判定
专题:计算题,证明题,空间位置关系与距离,空间角
分析:(1)运用线面垂直的判定定理和性质定理,以及面面垂直的判定定理即可证得;
(2)由(1)的结论和D1在平面ABC1的射影F在边AE上,得到F为△ABC1的重心,运用射影定理知,D1C1=
2
DD1
设DD1=a,求出D1F、AD1的长,由直线与平面所成的角的定义得到∠D1AF是所成的角,求出正弦值即可.
解答: (1)证明:∵CA=CB,D为AB的中点,∴CD⊥AB,
∵CC1⊥平面ABC,∴CC1⊥AB,∴AB⊥平面DCC1D1
∵AB?平面ABC1,∴平面ABC1⊥平面DCC1D1
(2)解:由(1)平面ABC1⊥平面DCC1D1
∴D1在平面ABC1上的射影F在交线C1D上,
已知F也在AE上,且C1D,AE为△ABC1的中线,
∴F为△ABC1的重心,且
C1F
=2
FD

∵在△DD1C1中,∠DD1C1为直角,D1F⊥DC1
利用射影定理知,D1C1=
2
DD1,设DD1=a,则D1C1=
2
a,D1F=
6
3
a
,AD=a,AD1=
2
a,
∴sin∠D1AF=
6
3
a
2
a
=
3
3
,即直线AD1与平面ABC1所成的角的正弦值为
3
3
点评:本题主要考查空间直线与平面的位置关系,考查直线与平面垂直的判定和性质,以及面面垂直的判定,同时考查空间的角:直线与平面所成的角,考查基本的运算能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个几何体是由圆柱和正三棱锥组合而成,其正视图和俯视图如图所示,则该几何体的表面积是(  )
A、4π+
3
2
3
B、4π+
9
4
3
C、2π+
3
2
3
D、2π+
9
4
3

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a,b,c分别是三个内角A,B,C的对边,a=3,cos
A+C
2
=
3
3
,且△ABC面积是2
2

(1)求cosB的值;
(2)求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等比数列,其前n项和为Sn,且满足16(a1+a4)+7=0,S1,S3,S2成等差数列.
(1)求数列{an}的通项公式;
(2)已知bn=n(n∈N+),记cn=(-1)nbnan-1,求数列{cn}前n项和f(n).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四边形PDCE为矩形,四边形ABCD为直角梯形,且∠BAD=∠ADC=90°,平面PDCE⊥平面ABCD,AB=AD=
1
2
CD=1,PD=
2

(Ⅰ)若M为PA中点,求证:AC∥平面MDE;
(Ⅱ)求该几何体被平面PBD所分成的两部分的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:

设A(-m,0),B(m,0)(m≠0),直线AC,BC相交于C,而且他们的斜率之积为-
1
m2
,若点P(1,
2
2
)是点C的轨迹上的点,直线l的方程为x=2.
(Ⅰ)求点C的轨迹方程;
(Ⅱ)过点E(1,0)的直线与点C的轨迹相交于D,M两点(不经过P点),直线DM与直线l相交于N,记直线PD,PM,PN的斜率分别为k1,k2,k3.求证:k1+k2=2k3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sinωx+cosωx-1(ω>0)相邻两个最大值间的距离为π,
(1)求ω的值;
(2)求f(x)在区间[-π,0]上的所有零点之和.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ax2+ex(a∈R)有且仅有两个极值点x1,x2(x1<x2).
(1)求实数a的取值范围;
(2)是否存在实数a满足f(x1)=e 
2
3
x1?如存在,求f(x)的极大值;如不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,若输出S的值是4,则输入正整数n的值为
 

查看答案和解析>>

同步练习册答案