精英家教网 > 高中数学 > 题目详情
2.探究:比较下面几个例子.你发现两个集合之间有哪几种基本关系?
A={3,6,9}与B={x|x=3k,k∈N且k≤333};
C={茶陵二中学生}与D={茶陵二中高一学生};
E={x|x(x-1)(x-2)=0}与F={0,1,2}.

分析 先用列举法列举出B集合,再判断A与B之间是哪种关系.
C和D之间的关系可以观察出来.
用列举法列举出E集合,E={0,1,2},再判断集合E和集合F之间的关系.

解答 解:列举法列举出B集合:B={0,3,6,9…999},A={3,6,9}
则根据真子集的定义,可以得出 A?B;
根据真子集的定义,可以得出 D?C;
列举法列出E集合:E={0,1,2},F={0,1,2}
根据集合相等的定义,可以得出E=F.
集合与集合之间的基本关系有3种:子集,真子集,相等.

点评 本题主要考察集合与集合之间的3种基本关系,所以要求必须掌握3种关系的定义,难点是B集合是无限集,有的学生可能不知道可以用列举法列举,列举的时候注意k的取值范围,要注意自然数N包括0.E集合的元素是方程x(x-1)(x-2)=0实数根,解方程可得x=0或1或2.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.求证:不论m取什么实数,方程x2-(m2+m)x+m-2=0必有两个不相等的实数根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知A={x|x具有性质p},B={x|x具有性质q},c={x|x具有性质r},集台A,B,C之间的关系如图所示:(注:每-个集合均是一个圆及其内部)
(1)p是q的什么条件?
(2)q是r的什么条件?
(3)r是p的什么条件?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列各组函数相等的是(  )
A.f(x)=x-2,g(x)=$\frac{{x}^{2}-4}{x+2}$B.f(x)=$\frac{|x|}{x}$,g(x)=1(x≠0)
C.f(x)=x2-2x-1,g(t)=t2-2t-1D.f(x)=$\frac{1}{2}$,g(x)=$\frac{(x-1)^{0}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在矩形ABCD,AB=2,AD=1,边DC上(包含点D、C)的动点P与CB延长线上(包含点B)的动点Q满足|$\overline{DP}$|=|$\overline{BQ}$|,则向量$\overline{PA}$与向量$\overline{PQ}$的数量积$\overline{PA}$•$\overline{PQ}$的最小值为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x∈R,a,b为常数,求方程f(x)=5的根.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.设f(x)=C${\;}_{20}^{10-x}$,g(x)=P${\;}_{20}^{x}$,集合A={x||x|≤10,x∈Z},B={x|1≤x<20.x∈N*}
(1)若f(x)的定义域为A,判断f(x)的奇偶性
(2)解方程f(6-x)=f(2x-15)
(3)若g(x)的定义域为B,求证:g(x)是增函数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知非零向量$\overrightarrow{a}$和$\overrightarrow{b}$,函数f(x)=$\overrightarrow{a}$2x2+2($\overrightarrow{a}$•$\overrightarrow{b}$)x+1,若方程f(x)=0有两个相等的实根,|$\overrightarrow{b}$|=2,求向量$\overrightarrow{a}$和$\overrightarrow{b}$的夹角.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=3x2-(2a+6)x+a+3.
(1)若f(x)>-a成立,求x的取值范围;
(2)对任意的x∈R,都有f(x)≥0恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案