精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=x2+2x+a,f(bx)=9x2-6x+2,其中x∈R,a,b为常数,求方程f(x)=5的根.

分析 由已知中函数f(x)=x2+2x+a,f (bx)=9x-6x+2,我们可以求出参数a,b的值,进而得到方程f(x)=5的根.

解答 解:解:∵f(x)=x2+2x+a,f (bx)=9x-6x+2,
∴(bx)2+2bx+a=9x-6x+2
∴b=-3,a=2
∴方程f(x)=5可化为:x2+2x-3=0,
解得:x=-3,或x=1

点评 本题考查的知识点是根的存在性及根的个数判断,其中根据已知条件,求出a,b的值,是解答本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.用数学归纳法证明:$\frac{1}{2}$+$\frac{2}{{2}^{2}}$+$\frac{3}{{2}^{3}}$+…+$\frac{n}{{2}^{n}}$=2-$\frac{n+2}{{2}^{n}}$•(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知各项均不相等的正项数列{an}的首项为$\frac{1}{2}$,当n≥2时,an2=an+1•an-1,数列{bn}对任意n∈N+均有(bn+1-bn+2)lga1+(bn+2-bn)lga3+(bn-bn+1)lga5=0.
(1)若a1≠a2,求证:数列{bn}是等差数列;
(2)在(1)的条件下.已知b1=2,b4=5,a2=$\frac{1}{2}$a1,数列{cn}满足cn=an•bn,记数列{cn}的前n项和为Sn,求证:Sn<3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设集合A={x|2x<4},B={x|m2<x<m2+1},若“x∈A”是“x∈B”的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.探究:比较下面几个例子.你发现两个集合之间有哪几种基本关系?
A={3,6,9}与B={x|x=3k,k∈N且k≤333};
C={茶陵二中学生}与D={茶陵二中高一学生};
E={x|x(x-1)(x-2)=0}与F={0,1,2}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}满足(n-1)an+1=(n+1)(an-1).
(1)求证:数列{$\frac{{a}_{n}}{n}$}是等差数列;
(2)设Sn=$\frac{1}{{a}_{2}-2}$+$\frac{1}{{a}_{3}-3}$+…+$\frac{1}{{a}_{n}-n}$.若a2=6,且nSn<an-1-n2+k对一切n≥2的自然数恒成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.
(1)求f(x)与g(x)的解析式;
(2)若F(x)=g(x)-λf(x)在[-1,1]上是增函数,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图,四边形ABCD是边长为1的正方形,延长CD至E,使得DE=2CD,动点P从点A出发,沿正方形的边按逆时针方向运动到C点,$\overrightarrow{AP}$=$λ\overrightarrow{AB}$+μ$\overrightarrow{AE}$,若$\overrightarrow{AE}$•$\overrightarrow{AP}$=-$\frac{5}{3}$,则λ+μ=(  )
A.$\frac{5}{6}$B.1或2C.$\frac{5}{6}$或2D.1或$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.画出下列函数的图象:
F(x)=$\left\{\begin{array}{l}{0,x≤0}\\{1,x>0}\end{array}\right.$.

查看答案和解析>>

同步练习册答案