精英家教网 > 高中数学 > 题目详情
14.如果实数x、y满足关系$\left\{\begin{array}{l}{x+y-2≤0}\\{x-y≤0}\\{2x-y+2≥0}\end{array}\right.$则(x-1)2+y2的最小值是(  )
A.$\frac{\sqrt{2}}{2}$B.$\frac{1}{2}$C.$\frac{1}{4}$D.$\sqrt{2}$

分析 首先画出可行域,利用目标函数的几何意义求最小值.

解答 解:由已知得到平面区域如图:
则(x-1)2+y2的几何意义是点(1,0)到区域距离的平方,所以最小值是$(\frac{1}{\sqrt{2}})^{2}=\frac{1}{2}$;
故选B.

点评 本题考查了简单线性规划问题;首先画出可行域,一般利用目标函数的几何意义求最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.△ABC中,已知a=7,b=14,A=30°,则△ABC有(  )
A.一解B.二解C.无解D.一解或二解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数$\frac{5i}{1+2i}$的虚部是(  )
A.iB.-iC.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若∅?{x|x2≤a,a∈R},则实数a的取值范围是[0,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知实数x,y满足$\left\{\begin{array}{l}{x-y+1≥0}\\{x+y-3≥0}\\{3x-y-5≥0}\end{array}\right.$,则z=$\frac{y+1}{2x}$的最大值为$\frac{5}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若m是2和8的等比中项,则圆锥曲线${x^2}+\frac{y^2}{m}=1$的焦距为$2\sqrt{3}$或$2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=ex+x3,若f(x2)<f(3x-2),则实数x的取值范围是(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线y=x-2与抛物线y2=2x相交于A、B两点,O为坐标原点.
(1)求证:OA⊥OB.
(2)求|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设是定义在R上的偶函数,且f(x+2)=f(2-x)时,当x∈[-2,0]时,$f(x)={(\frac{{\sqrt{2}}}{2})^x}-1$,若(-2,6)在区间内关于x的方程xf(x)-loga(x+2)=0(a>0且a≠1)有且只有4个不同的根,则实数a的范围是(  )
A.$(\frac{1}{4},1)$B.(1,4)C.(1,8)D.(8,+∞)

查看答案和解析>>

同步练习册答案