分析 (1)由题意利用三角函数的周期性和最值求得A、k、ω的值,从而求得f(x)的解析式,再利用正弦函数的单调性,求得f(x)的单调递增区间.
(2)利用正弦函数的定义域和值域,求得函数f(x)在区间[0,$\frac{π}{3}}$]上的取值范围.
解答 解:(1)∵函数函数f(x)=Asin(2ωx+ϕ)+k的值域为$[{-\frac{1}{2},\frac{3}{2}}]$,A>0,∴$\left\{\begin{array}{l}A+k=\frac{3}{2}\\-A+k=-\frac{1}{2}\end{array}\right.$,∴$\left\{\begin{array}{l}A=1\\ k=\frac{1}{2}\end{array}\right.$.
又$\frac{2π}{2ω}=\frac{π}{2}$,∴ω=2,∵当$x=\frac{π}{6}$时,函数f(x)取得最大值$\frac{3}{2}$.
∴$4×\frac{π}{6}+ϕ=2kπ+\frac{π}{2}$,又$ϕ∈[{-\frac{π}{2},\frac{π}{2}}]$,∴$ϕ=-\frac{π}{6}$,∴$f(x)=sin({4x-\frac{π}{6}})+\frac{1}{2}$.
令 2kπ-$\frac{π}{2}$≤4x-$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,解得$\frac{kπ}{2}-\frac{π}{12}$≤x≤$\frac{kπ}{2}$+$\frac{π}{6}$(k∈Z),所以f(x)的增区间为$[{\frac{kπ}{2}-\frac{π}{12},\frac{kπ}{2}+\frac{π}{6}}]$(k∈Z).
(2)因为x∈$[{0,\frac{π}{3}}]$,所以4x-$\frac{π}{6}$∈$[{-\frac{π}{6},\frac{7π}{6}}]$,
所以sin$({4x-\frac{π}{6}})$∈$[{-\frac{1}{2},1}]$,所以f(x)∈$[{0,\frac{3}{2}}]$,
故f(x)在区间$[{0,\frac{π}{3}}]$上的取值范围是$[{0,\frac{3}{2}}]$.
点评 本题主要考查三角函数的周期性和最值,正弦函数的单调性,正弦函数的定义域和值域,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+i | B. | 2-i | C. | 1+2i | D. | 1+2i |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com