精英家教网 > 高中数学 > 题目详情
14.等比数列{an}中,S10=10,S20=30,求S30

分析 由等比数列的性质可得,S10,S20-S10,S30-S20成等比数列,即(S20-S102=S10•(S30-S20),代入可求.

解答 解:由等比数列的性质可得,S10,S20-S10,S30-S20成等比数列,
∴(S20-S102=S10•(S30-S20),
∴400=10(S30-30),
∴S30=70.

点评 本题考查等比数列的前n项和的性质,注意灵活运用等比数列的性质.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.下列的说法正确的有几个(  )
(1)0∈∅(2)∅⊆A   (3)若A=B,则A⊆B  (4)∅?A   (5)$\sqrt{2}$∉Q.
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若直线l1:(2a+3)x+(a-1)y+3=0与l2:(a+2)x+1(1-a)y-3=0平行,则实数a=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知正方体ABCD-A′B′C′D′,E是底面A′B′C′D′的中心,$\overrightarrow{a}$=$\frac{1}{2}$$\overrightarrow{AA′}$,$\overrightarrow{b}$=$\frac{1}{2}$$\overrightarrow{AB}$,$\overrightarrow{c}$=$\frac{1}{3}$$\overrightarrow{AD}$,$\overrightarrow{AE}$=x$\overrightarrow{a}$+y$\overrightarrow{b}$+z$\overrightarrow{c}$,则(  )
A.x=2,y=1,z=$\frac{3}{2}$B.x=1,y=$\frac{1}{2}$,z=$\frac{1}{2}$C.x=$\frac{1}{2}$,y=$\frac{1}{2}$,z=1D.x=$\frac{1}{2}$,y=$\frac{1}{2}$,z=$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,三个内角A,B,C的对边分别是a,b,c,且满足(b-a)(sinB+sinA)=(b-a)sinC,cosC=$\frac{\sqrt{3}}{3}$,a=3.
(1)求sinB的值;
(2)求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知sinα=-$\frac{4}{5}$且$\frac{π}{2}$<α<$\frac{3π}{2}$.
(1)求cosα的值;
(2)求$\frac{sin(\frac{π}{2}-α)cos(-α-π)tan(π-α)}{sin(-π+α)cos(\frac{π}{2}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义一种新运算:a?b=$\left\{\begin{array}{l}{b,a≥b}\\{a,a<b}\end{array}\right.$,已知函数f(x)=(1+$\frac{4}{x}$)?log2x,若函数g(x)=f(x)-k恰有两个零点,则k的取值范围为(1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知函数f(2x-1)的定义域是(-1,2],求函数f(x)的定义域是(-3,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将y=ln(x-1)的图象向(  )平移1个单位,再作关于直线y=x对称的图象,可得到y=ex的图象.
A.B.C.D.

查看答案和解析>>

同步练习册答案